Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory

This article is in need of attention from a psychologist/academic expert on the subject.
Please help recruit one, or improve this page yourself if you are qualified.
This banner appears on articles that are weak and whose contents should be approached with academic caution

Varimax rotation is a change of coordinates used in principal component analysis that maximizes the sum of the variance of the loading vectors. That is, it seeks a basis such that most economically represents each individual—that each individual can be well described by a linear combination of only a few basis functions.

Suggested by Henry Felix Kaiser in 1958, it is a popular scheme for orthogonal rotation which cleans up the factors as follows: "for each factor, high loadings (correlations) will result for a few variables; the rest will be near zero."

The advantages and disadvantages of the technique is discussed at the website of Columbia University [1].

Varimax rotation in personality researchEdit

See also Edit


Further readingEdit


  • Lee, H. B. (1979). An empirical comparison of some factor analytic methods. Lee, Howard B : U California, Los Angeles.
  • Newton, B. E. (2001). A critical study of the varimax rotation method, with a comparison to Bieber's invariance solution for one-sample. Newton, Brian Edward: U Wyoming, US.


Adachi, K. (2004). Oblique Promax Rotation Applied to the Solutions in Multiple Correspondence Analysis. Behaviormetrika, 31(1), 1-12.

  • Agrawal, K. (1973). The meaning of work: IV. Reinterpreting factor structure. Journal of Psychological Researches, 17(1), 10-12.
  • Aiken, L. S. (1972). Simultaneous processing of typal and dimensional variation among multidimensional events. Multivariate Behavioral Research Vol 7(3) Jul 1972, 305-316.
  • Archer, C. O., & Jennrich, R. I. (1973). Standard errors for rotated factor loadings. Psychometrika, 38(4, 581-592.
  • Bhushan, V. (1978). A factor analysis of the Minnesota Teacher Attitude Inventory. Scientia Paedagogica Experimentalis, 15(2), 207-214.
  • Bianchi, G. (1973). Patterns of hypochondriasis: A principal components analysis. British Journal of Psychiatry Vol 122(570) May 1973, 541-548.
  • Bienvenu, M. J., & Stewart, D. W. (1976). Dimensions of interpersonal communication. Journal of Psychology: Interdisciplinary and Applied, 93(1), 105-111.
  • Boente, G., Pires, A. M., & Rodrigues, I. M. (2006). General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study. Journal of Multivariate Analysis, 97(1), 124-147.
  • Brand, C., & Egan, V. (1989). The "Big Five" dimensions of personality? Evidence from ipsative, adjectival self-attributions. Personality and Individual Differences, 10(11), 1165-1171.
  • Brems, C., & Johnson, M. E. (1990). Reexamination of the Bem Sex-Role Inventory: The interpersonal BSRI. Journal of Personality Assessment, 55(3-4), 484-498.
  • Carlson, R. W. (1979). Dimensionality of the Repression Sensitization Scale. Journal of Clinical Psychology, 35(1), 78-84.
  • Conger, A. J., Conger, J. C., Farrell, A. D., & Ward, D. (1979). What can the WISC-R measure? Applied Psychological Measurement, 3(4), 421-436.
  • Cureton, E. E., & Mulaik, S. A. (1975). The weighted varimax rotation and the promax rotation. Psychometrika, 40(2), 183-195.
  • Devoid, G. H. (2007). The motivations of online learners. Devoid, Gail Harrigan: Capella U , US.
  • Fowler, P. C. (1981). Maximum likelihood factor structure of the Family Environment Scale. Journal of Clinical Psychology, 37(1), 160-164.
  • Green, D. E., & Walkey, F. H. (1991). A fourth-order analysis of the Eysenck Personality Inventory: Some predictable results from an unusual analysis. Social Behavior and Personality, 19(3), 157-163.
  • Guilford, J. (1977). The invariance problem in factor analysis. Educational and Psychological Measurement, 37(1), 11-19.
  • Gurel, L. (1967). Dimensions of Psychiatric Patient Ward Behavior. Journal of Consulting Psychology, 31(3), 328-331.
  • Harris, S. M., & Halpin, G. (2002). Development and validation of the Factors Influencing Pursuit of Higher Education Questionnaire. Educational and Psychological Measurement, 62(1), 79-96.
  • Hobi, V., & Klar, A. (1973). A combined factor analysis of the MMPI, FPI and 16-PF. Zeitschrift fur Klinische Psychologie, 1(2), 27-48.
  • Holmstrom, R. W., Karp, S. A., & Silber, D. E. (1992). Factor structure of the Apperceptive Personality Test (APT). Journal of Clinical Psychology, 48(2), 207-210.
  • Hull, J. T. (1980). Environmental normalization: A factor analysis. Psychosocial Rehabilitation Journal, 4(1), 20-26.
  • Huntingford, F. A. (1976). An investigation of the territorial behaviour of the three-spined stickleback (Gasterosteus aculeatus) using principal components analysis. Animal Behaviour, 24(4), 822-834.
  • Ibanez Guerra, E., Morales Meseguer, J. M., & Seoane Rey, J. (1975). Factorial structure of anxiety: Normal and neurotic anxiety. Archivos de Neurobiologia, 38(6), 519-530.
  • John, E., & et al. (1973). Factor analysis of evoked potentials. Electroencephalography & Clinical Neurophysiology Vol 34(1) Jan 1973, 33-43.
  • Kaemmerer, W. F., & Schwebel, A. I. (1976). Factors of the Rotter Internal-External Scale. Psychological Reports, 39(1), 107-114.
  • Kaiser, H. F., & Cerny, B. A. (1978). Casey's Method for fitting hyperplanes from an intermediate orthomax solution. Multivariate Behavioral Research, 13(4), 395-401.
  • Kiers, H. A. (1997). Three-mode orthomax rotation. Psychometrika, 62(4), 579-598.
  • Kiers, H. A. (1998). Joint orthomax rotation of the core and component matrices resulting from three-mode principal components analysis. Journal of Classification, 15(2), 245-263.
  • Kuramoto, H., Kanbayashi, Y., Nakata, Y., Fukui, T., Mukai, T., & Negishi, Y. (2002). Standardization of The Japanese Version of The Youth Self Report (YSR). Japanese Journal of Child and Adolescent Psychiatry, 43(Suppl), 17-32.
  • Michael, J. J., Devaney, R. L., & Michael, W. B. (1980). The factorial validity of the Cornell Critical Thinking Test for a junior high school sample. Educational and Psychological Measurement, 40(2), 437-450.
  • Mocks, J., & Verleger, R. (1986). Principal component analysis of event-related potentials: A note on misallocation of variance. Electroencephalography & Clinical Neurophysiology: Evoked Potentials, 65(5), 393-398.
  • Monk, T. H., & Kupfer, D. J. (2007). Which aspects of morningness-eveningness change with age? Journal of Biological Rhythms, 22(3), 278-280.
  • Morris, J. D. (1977). Rotating a discriminant analysis solution. Behavior Research Methods & Instrumentation, 9(1), 29.
  • Neudecker, H. (1981). On the matrix formulation of Kaiser's varimax criterion. Psychometrika, 46(3), 343-345.
  • Nevels, K. (1986). A direct solution for pairwise rotations in Kaiser's varimax method. Psychometrika, 51(2), 327-329.
  • Peltzer, K. (2002). Factor structure of religious problem-coping styles in an African sample. Social Behavior and Personality, 30(5), 509-514.
  • Pino, M., Dominguez, J., & Lopez-Castedo, A. (2007). Evaluating appreciation of measures attending to pupil diversity (EMAD). Psychological Reports, 100(3, Pt 1), 783-786.
  • Platten, M. R., & Williams, L. R. (1979). A comparative analysis of the factorial structures of two administrations of the Piers-Harris Children's Self Concept Scale to one group of elementary school children. Educational and Psychological Measurement, 39(2), 471-478.
  • Powers, S. (1984). PCOM: A microcomputer program that performs a principal components analysis. Educational and Psychological Measurement, 44(3), 679-680.
  • Puhan, B. N. (1981). Effects of marker variables on WAIS communalities. Educational and Psychological Measurement, 41(1), 55-59.
  • Rosler, F., & Manzey, D. (1981). Principal components and VARIMAX-rotated components in event-related potential research: Some remarks on their interpretations. Biological Psychology Vol 13 Dec 1981, 3-26.
  • Sawicki, R. F., & Golden, C. J. (1984). Multivariate statistical techniques in neuropsychology: I. Comparison of orthogonal rotation methods with the Receptive scale of the Luria-Nebraska Neuropsychological Battery. International Journal of Clinical Neuropsychology, 6(2), 126-134.
  • Stevenson, J. (1993). Multivariate statistics: V. The use of factor scores in psychiatric research. Nordic Journal of Psychiatry, 47(3), 169-178.
  • Stewart, R. A. (1974). Factor analysis and rotation of the 566 MMPI items. Social Behavior and Personality, 2(2), 147-156.
  • Stewart, R. A. (1977). Factor analysis and rotation of responses to the Junior Eysenck Personality Inventory. Psychological Reports, 40(2), 599-601.
  • Taysi, E. (2007). Transgression-Related Interpersonal Motivations Inventory: A study of validity and reliability. Turk Psikoloji Yazilari, 10(20), 63-74.
  • ten Berge, J. M. (1984). A joint treatment of varimax rotation and the problem of diagonalizing symmetric matrices simultaneously in the least-squares sense. Psychometrika, 49(3), 347-358.
  • Vegelius, J., & Backstrom, A. (1981). An enquiry about religion, analyzed by a nominal scale truncated component analysis. Educational and Psychological Measurement, 41(3), 717-724.
  • Veldman, D. J. (1974). Simple structure and the number of factors problem. Multivariate Behavioral Research Vol 9(2) Apr 1974, 191-200.
  • Wastell, D. (1981). PCA and VARIMAX rotation: Some comments on Rosler and Manzey. Biological Psychology Vol 13 Dec 1981, 27-29.
  • Wood, J. M., Tataryn, D. J., & Gorsuch, R. L. (1996). Effects of under- and overextraction on principal axis factor analysis with varimax rotation. Psychological Methods, 1(4), 354-365.

External links Edit


This page uses Creative Commons Licensed content from Wikipedia (view authors).

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.