## FANDOM

34,204 Pages

A Type I error , also called a false positive, exists when a test incorrectly reports that it has found a result where none really exists.

## False positive rateEdit

The false positive rate is the proportion of negative instances that were erroneously reported as positive. It is equal to 1 minus the specificity of the test.

${\rm false\ positive\ rate} = \frac{\rm number\ of\ false\ positives}{\rm number\ of\ negatives}$

In statistical hypothesis testing, this fraction is sometimes described as the size of the test, and is given the symbol α.

## False positives vs. false negativesEdit

When developing detection algorithms (that is, tests) there is a tradeoff between false positives, and false negatives (in which an actual match is not detected). A threshold value can be varied to make the algorithm more restrictive or more sensitive. Restrictive algorithms risk rejecting true positives while more sensitive algorithms risk accepting false positives.

## False positives in medicineEdit

False positives are a significant issue in medical testing. In some cases, there are two or more tests that can be used, one of which is simpler and less expensive, but less accurate, than the other. For example, the simplest tests for HIV and hepatitis in blood have a significant rate of false positives. These tests are used to screen out possible blood donors, but more expensive and more precise tests are used in medical practice, to determine whether a person is actually infected with these viruses.

Perhaps the most widely discussed false positives in medicine come from screening mammography, a test to detect breast cancer. The US rate of false positive mammograms is up to 15%, the highest in world. The lowest rate in the world is in Holland, 1%. The lowest rates are generally in Northern Europe where mammography films are read twice and a high threshold for additional testing is set. One consequence of the US’s high false positive rate is that, in a ten year period, half of American women receive a false positive mammogram. False positive mammograms are costly, with over \$100 million spent annually in the US on unnecessary follow-up testing and treatment. They also cause women unneeded anxiety. Research has shown that the anxiety associated with receiving a false positive can be reduced if the time between the abnormal result and the all clear is reduced.

False positives are also problematic in biometric scans, such as retina scans or facial recognition, when the scanner incorrectly identifies someone as matching a known person, either a person who is entitled to enter the system, or a suspected criminal.

False positives can produce serious and counterintuitive problems when the condition being searched for is rare. If a test has a false positive rate of one in ten thousand, but only one in a million samples (or people) is a true positive, most of the "positives" detected by the test will be false. The probability that an observed positive result is a false positive may be calculated, and the problem of false positives demonstrated, using Bayes' theorem.

## False positives in computer database searchingEdit

In computer database searching, false positives are documents that are retrieved by a search despite their irrelevance to the search question. False positives are common in full text searching, in which the search algorithm examines all of the text in all of the stored documents in an attempt to match one or more search terms supplied by the user.

Most false positives can be attributed to the deficiencies of natural language, which is often ambiguous: the term "home," for example, may mean "a person's dwelling" or "the main or top-level page in a Web site." The false positive rate can be reduced by using a controlled vocabulary, but this solution is expensive because the vocabulary must be developed by an expert and applied to documents by trained indexers.

## False positives and spamEdit

The term "False positive" is also used when spam filtering or spam blocking techniques wrongly classify a legitimate email message as spam and as a result interferes with its delivery.

The opposite, a False Negative, occurs when filtering allows a spam email to be delivered to a user's inbox.

While most anti-spam tactics can block or filter a high percentage of unwanted emails, doing so without creating significant false-positive results is a much more demanding task.

A commonly referenced sub-category is the "Critical False-Positive." This term is used to distinguish the accidental blocking of mass-emails that may not be spam, but are not generally regarded as critical communications, in contrast with user to user messages and automated transaction notifications where timely delivery is much more important.

## False positives and malwareEdit

The term False positive is also used when antivirus software wrongly classifies a file as a virus. The incorrect detection may occur either by heuristics or by an incorrect virus signature in a database. Similar problems can occur with antitrojan or antispyware software.

## False positives and ghost investigationEdit

False positive has been adopted by paranormal or ghost investigation groups to describe a photograph, recording, or other evidence that incorrectly appears to have a paranormal origin. In other words, a false positive in this context is a disproven piece of media (image, movie, audio recording, etc.) that has a normal explanation. Several sites provide examples of false positives, including The Atlantic Paranormal Society (TAPS) and Moorestown Ghost Research.

## ReferencesEdit

• Abramson, I., Wolfson, T., Marcotte, T. D., & Grant, I. (1999). Extending the p-plot: Heuristics for multiple testing: Journal of the International Neuropsychological Society Vol 5(6) Sep 1999, 510-517.
• Aguinis, H., Sturman, M. C., & Pierce, C. A. (2008). Comparison of three meta-analytic procedures for estimating moderating effects of categorical variables: Organizational Research Methods Vol 11(1) Jan 2008, 9-34.
• Akins, R. N. (1993). The robustness of the two- and three-predictor random regression models under conditions of.8-super(.2),.7-super(.3),.6-super(.4), and.5-super(.5) dichotomous proportion splits and sample sizes of N=15, 30, and 45: Dissertation Abstracts International.
• Alexander, R. A., Hanges, P. J., & Alliger, G. M. (1985). An empirical examination of two transformations of sample correlations: Educational and Psychological Measurement Vol 45(4) Win 1985, 797-801.
• Algina, J. (1994). Some alternative approximate tests for a split plot design: Multivariate Behavioral Research Vol 29(4) 1994, 365-384.
• Algina, J., Blair, R. C., & Coombs, W. T. (1995). A maximum test for scale: Type I error rates and power: Journal of Educational and Behavioral Statistics Vol 20(1) Spr 1995, 27-39.
• Algina, J., Olejnik, S., & Ocanto, R. (1989). Type I error rates and power estimates for selected two-sample tests of scale: Journal of Educational Statistics Vol 14(4) Win 1989, 373-384.
• Algina, J., & Oshima, T. C. (1994). Type I error rates for Huynh's general approximation and improved general approximation tests: British Journal of Mathematical and Statistical Psychology Vol 47(1) May 1994, 151-165.
• Algina, J., & Oshima, T. C. (1995). An improved general approximation test for the main effect in a split-plot design: British Journal of Mathematical and Statistical Psychology Vol 48(1) May 1995, 149-160.
• Algina, J., Oshima, T. C., & Lin, W.-Y. (1994). Type I error rates for Welch's test and James's second-order test under nonnormality and inequality of variance when there are two groups: Journal of Educational and Behavioral Statistics Vol 19(3) Fal 1994, 275-291.
• Algina, J., Oshima, T. C., & Tang, K. L. (1991). Robustness of Yao's, James', and Johansen's tests under variance-covariance heteroscedasticity and nonnormality: Journal of Educational Statistics Vol 16(2) Sum 1991, 125-139.
• Algina, J., & Tang, K. L. (1988). Type I error rates for Yao's and James' tests of equality of mean vectors under variance-covariance heteroscedasticity: Journal of Educational Statistics Vol 13(3) Fal 1988, 281-290.
• Allison, D. B., Franklin, R. D., & Heshka, S. (1992). Reflections on visual inspection, response guided experimentation, and Type I error rate in single-case designs: Journal of Experimental Education Vol 61(1) Fal 1992, 45-51.
• Alpaydin, E. (1999). Combined 5x2 cv F test for comparing supervised classification learning algorithms: Neural Computation Vol 11(8) Nov 1999, 1885-1892.
• Alsawalmeh, Y. M., & Feldt, L. S. (1999). Testing the equality of two independent alpha coefficients adjusted by the Spearman-Brown formula: Applied Psychological Measurement Vol 23(4) Dec 1999, 363-370.
• Ankenmann, R. D., Witt, E. A., & Dunbar, S. B. (1999). An investigation of the power of the likelihood ratio goodness-of-fit statistic in detecting differential item functioning: Journal of Educational Measurement Vol 36(4) Win 1999, 277-300.
• Armstrong, S. A., & Henson, R. K. (2005). Statistical Practices of IJPT Researchers: A Review from 1993-2000: International Journal of Play Therapy Vol 14(1) 2005, 7-26.
• Attorresi, H. F., Galibert, M. S., Zanelli, M. L., Lozzia, G. S., & Aguerri, M. E. (2003). Type I Error in the Differential Item Functioning analysis based on the difficulty parameters difference: Psicologica Vol 24(2) 2003, 289-306.
• Austin, E. (2004). Review of How to design and report experiments: British Journal of Mathematical and Statistical Psychology Vol 57(2) Nov 2004, 380-381.
• Baer, D. M. (1977). Perhaps it would be better not to know everything: Journal of Applied Behavior Analysis Vol 10(1) Spr 1977, 167-172.
• Baldwin, S. A., Murray, D. M., & Shadish, W. R. (2005). Empirically supported treatments or type I errors? Problems with the analysis of data from group-administered treatments: Journal of Consulting and Clinical Psychology Vol 73(5) Oct 2005, 924-935.
• Ballard, K. D. (1983). The visual analysis of time series data: Issues affecting the assessment of behavioural interventions: New Zealand Journal of Psychology Vol 12(2) Nov 1983, 69-73.
• Barcelona, R. J. (1993). Type I and II error rates for a traditional and new approach to validity generalization: Dissertation Abstracts International.
• Barnes, M. J. (1981). The effects of kurtosis, skewness and sample size on the Type I error rates and power of tests of homogeneity of variance: Dissertation Abstracts International.
• Batten, D. C. (1993). Truly multivariate repeated measures designs: Empirical evaluation of type I error and relative power for selected statistical procedures: Dissertation Abstracts International.
• Belknap, J. K., Mitchell, S. R., O'Toole, L. A., & Helms, M. L. (1996). Type I and Type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains: Behavior Genetics Vol 26(2) Mar 1996, 149-160.
• Benjamini, Y., & Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics: Journal of Educational and Behavioral Statistics Vol 25(1) Spr 2000, 60-83.
• Blair, R. C., Higgins, J. J., Topping, M. E., & Mortimer, A. L. (1983). An investigation of the robustness of the t test to unit of analysis violations: Educational and Psychological Measurement Vol 43(1) Spr 1983, 69-80.
• Botella, J. (2002). Power of alternative tests for two paired samples with missing data: Psicothema Vol 14(1) Feb 2002, 174-180.
• Bradley, J. V. (1978). Robustness? : British Journal of Mathematical and Statistical Psychology Vol 31(2) Nov 1978, 144-152.
• Bridge, P. D. (1996). The comparative power of the independent-samples t-test and Wilcoxon Rank Sum test in non-normal distributions of real data sets in education and psychology. Dissertation Abstracts International Section A: Humanities and Social Sciences.
• Briggs, N. E. (2007). Estimation of the standard error and confidence interval of the indirect effect in multiple mediator models. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Bush, L. K., Hess, U., & Wolford, G. (1993). Transformations for within-subject designs: A Monte Carlo investigation: Psychological Bulletin Vol 113(3) May 1993, 566-579.
• Callender, J. C., & Osburn, H. G. (1988). Unbiased estimation of sampling variance of correlations: Journal of Applied Psychology Vol 73(2) May 1988, 312-315.
• Camilli, G. (1990). The test of homogeneity for 2x2 contingency tables: A review of and some personal opinions on the controversy: Psychological Bulletin Vol 108(1) Jul 1990, 135-145.
• Chandler, C. R. (1995). Practical considerations in the use of simultaneous inference for multiple tests: Animal Behaviour Vol 49(2) Feb 1995, 524-527.
• Chen, R. S., & Dunlap, W. P. (1994). A Monte Carol study on the performance of a corrected formula for !e suggested by Lecoutre: Journal of Educational Statistics Vol 19(2) Sum 1994, 119-126.
• Choi, J. (2006). Effect of categorization on type I error and power in ordinal indicator latent means models for between-subjects designs. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Choi, T., & Schervish, M. J. (2007). On posterior consistency in nonparametric regression problems: Journal of Multivariate Analysis Vol 98(10) Nov 2007, 1969-1987.
• Church, J. D., & Wike, E. L. (1976). The robustness of homogeneity of variance tests for asymmetric distributions: A Monte Carlo study: Bulletin of the Psychonomic Society Vol 7(5) May 1976, 417-420.
• Church, J. D., & Wike, E. L. (1979). A Monte Carlo study of nonparametric multiple-comparison tests for a two-way layout: Bulletin of the Psychonomic Society Vol 14(2) Aug 1979, 95-98.
• Church, J. D., & Wike, E. L. (1980). Two Monte Carlo studies of Silverstein's nonparametric multiple comparison tests: Psychological Reports Vol 46(2) Apr 1980, 403-407.
• Church, J. D., & Wike, E. L. (1981). Silverstein's nonparametric many-one test for a one-way design: A Monte Carlo study: Psychological Reports Vol 48(1) Feb 1981, 19-22.
• Church, J. D., & Wike, E. L. (1981). Silverstein's nonparametric many-one test for a two-way design: A Monte Carlo study: Psychological Reports Vol 49(3) Dec 1981, 931-934.
• Cicchetti, D. V. (1974). Reply to Keselman concerning Cicchetti's interpretation of the findings of Petrinovich and Hardyck: Psychological Bulletin Vol 81(11) Nov 1974, 896-897.
• Cicchetti, D. V. (1987). More false conclusions about vineland standard scores: A reply to Silverstein's rejoinder: Psychological Reports Vol 60(3, Pt 2) Jun 1987, 1278.
• Cicchetti, D. V., & Sparrow, S. S. (1986). False conclusions about Vineland Standard Scores: Silverstein's Type I errors and other Artifacts: American Journal of Mental Deficiency Vol 91(1) Jul 1986, 5-9.
• Clement, T. H. (1975). Multiple comparison of means after analysis of covariance: Dissertation Abstracts International.
• Clinch, J. J., & Keselman, H. J. (1982). Parametric alternatives to the analysis of variance: Journal of Educational Statistics Vol 7(3) Fal 1982, 207-214.
• Cochrane, C.-Y. C., Dubnicka, S., & Loughin, T. (2005). Comparison of methods for analyzing replicated preference tests: Journal of Sensory Studies Vol 20(6) Dec 2005, 484-502.
• Coffman, D. L. (2006). Consequences of violating the parameter drift assumption in covariance structure models. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Cohen, A. S., Kim, S.-H., & Wollack, J. A. (1996). An investigation of the likelihood ratio test for detection of differential item functioning: Applied Psychological Measurement Vol 20(1) Mar 1996, 15-26.
• Cohen, J., & Nee, J. C. (1990). Robustness of Type I error and power in set correlation analysis of contingency tables: Multivariate Behavioral Research Vol 25(3) Jul 1990, 341-350.
• Cohen, P. (1982). To be or not to be: Control and balancing of Type I and Type II errors: Evaluation and Program Planning Vol 5(3) 1982, 247-253.
• Coombs, W. T., & Algina, J. (1996). New test statistics for MANOVA/descriptive discriminant analysis: Educational and Psychological Measurement Vol 56(3) Jun 1996, 382-402.
• Coombs, W. T., & Algina, J. (1996). On sample size requirements for Johansen's test: Journal of Educational and Behavioral Statistics Vol 21(2) Sum 1996, 169-178.
• Coombs, W. T., Algina, J., & Oltman, D. O. (1996). Univariate and multivariate omnibus hypothesis tests selected to control Type I error rates when population variances are not necessarily equal: Review of Educational Research Vol 66(2) Sum 1996, 137-179.
• Cornwell, J. M. (1993). Monte Carlo comparisons of three tests for homogeneity of independent correlations: Educational and Psychological Measurement Vol 53(3) Fal 1993, 605-618.
• Costlow, G. D. (1994). An investigation of the conditional probabilities associated with f ratios sharing a common denominator. Dissertation Abstracts International Section A: Humanities and Social Sciences.
• Cotton, J. W. (1975). Review of A first reader in statistics. 2nd Ed: PsycCRITIQUES Vol 20 (5), May, 1975.
• Cousins, P. C. (1984). Power and bias in the z score: A comparison of sequential analytic indices of contingency: Dissertation Abstracts International.
• Cousins, P. C., Power, T. G., & Carbonari, J. P. (1986). Power and bias in the z score: A comparison of sequential analytic indices of contingency: Behavioral Assessment Vol 8(4) Fal 1986, 305-317.
• Crawford, J. R., & Garthwaite, P. H. (2005). Evaluation of Criteria for Classical Dissociations in Single-Case Studies by Monte Carlo Simulation: Neuropsychology Vol 19(5) Sep 2005, 664-678.
• Crawford, J. R., & Garthwaite, P. H. (2005). Testing for Suspected Impairments and Dissociations in Single-Case Studies in Neuropsychology: Evaluation of Alternatives Using Monte Carlo Simulations and Revised Tests for Dissociations: Neuropsychology Vol 19(3) May 2005, 318-331.
• Crawford, J. R., & Garthwaite, P. H. (2006). Detecting dissociations in single-case studies: Type I errors, statistical power and the classical versus strong distinction: Neuropsychologia Vol 44(12) 2006, 2249-2258.
• Crawford, J. R., Garthwaite, P. H., Azzalini, A., Howell, D. C., & Laws, K. R. (2006). Testing for a deficit in single-case studies: Effects of departures from normality: Neuropsychologia Vol 44(4) 2006, 666-677.
• Cribbie, R. A. (2000). Evaluating the importance of individual parameters in structural equation modeling: The need for type I error control: Personality and Individual Differences Vol 29(3) Sep 2000, 567-577.
• Cribbie, R. A. (2003). Pairwise multiple comparisons: New yardstick, new results: Journal of Experimental Education Vol 71(3) Spr 2003, 251-265.
• Cribbie, R. A. (2007). Multiplicity control in structural equation modeling: Structural Equation Modeling Vol 14(1) 2007, 98-112.
• Cribbie, R. A., & Keselman, H. J. (2003). The effects of nonnormality on parametric, nonparametric, and model comparison approaches to pairwise comparisons: Educational and Psychological Measurement Vol 63(4) Aug 2003, 615-635.
• Cribbie, R. A., & Keselman, H. J. (2003). Pairwise multiple comparisons: A model comparison approach versus stepwise procedures: British Journal of Mathematical and Statistical Psychology Vol 56(1) May 2003, 167-182.
• Crosbie, J. (1987). The inability of the binomial test to control Type I error with single-subject data: Behavioral Assessment Vol 9(2) Spr 1987, 141-150.
• Crosbie, J. (1993). Interrupted time-series analysis with brief single-subject data: Journal of Consulting and Clinical Psychology Vol 61(6) Dec 1993, 966-974.
• Crosby, R. A. (1998). Condom use as a dependent variable: Measurement issues relevant to HIV prevention programs: AIDS Education and Prevention Vol 10(6) Dec 1998, 548-557.
• Davis, C., & Gaito, J. (1984). Multiple comparison procedures within experimental research: Canadian Psychology/Psychologie Canadienne Vol 25(1) Jan 1984, 1-13.
• de Cani, J. S. (1984). Balancing Type I risk and loss of power in ordered Bonferroni procedures: Journal of Educational Psychology Vol 76(6) Dec 1984, 1035-1037.
• Deaton, W. L. (1978). A comparison of approximate solutions for fixed effects factorial analysis of variance with disproportionate cell sizes: Dissertation Abstracts International.
• DeMars, C. E. (2004). Type I error rates for generalized graded unfolding model fit indices: Applied Psychological Measurement Vol 28(1) Jan 2004, 48-71.
• Demars, C. E. (2005). Type I Error Rates for Parscale's Fit Index: Educational and Psychological Measurement Vol 65(1) Feb 2005, 42-50.
• Dow, M. M. (1993). Saving the theory: On chi-square tests with cross-cultural survey data: Cross-Cultural Research: The Journal of Comparative Social Science Vol 27(3-4) Aug-Nov 1993, 247-276.
• Dunlap, W. P., Greer, T., & Beatty, G. O. (1996). A Monte-Carlo study of Type I error rates and power for Tukey's pocket test: Journal of General Psychology Vol 123(4) Oct 1996, 333-339.
• Egan, T. A. (1975). An empirical investigation into the effective Type-I error rates and the power estimates in small samples for suggested solutions to the Behrens-Fisher problem: Dissertation Abstracts International.
• Elliott, S. D. (1989). The method of unweighted means in univariate and multivariate analysis of variance: Educational and Psychological Measurement Vol 49(2) Sum 1989, 399-405.
• Erdfelder, E. (1985). Proof of alternative hypotheses: Notes on Pieter Koele's comments: Zeitschrift fur Sozialpsychologie Vol 16(1) 1985, 59-62.
• Evans, L. D. (1992). Multiple IQ-achievement comparisons: Effects on severe discrepancy determination: Learning Disability Quarterly Vol 15(3) Sum 1992, 167-174.
• Feild, H. S., & Armenakis, A. A. (1974). On use of multiple tests of significance in psychological research: Psychological Reports Vol 35(1, Pt 2) Aug 1974, 427-431.
• Fernandez, P., Livacic-Rojas, P., & Vallejo, G. (2007). How to elect the best statistical analysis for to analyze a repeated measures design: International Journal of Clinical and Health Psychology Vol 7(1) Jan 2007, 153-175.
• Ferreira, M. A. R. (2004). Linkage Analysis: Principles and Methods for the Analysis of Human Quantitative Traits: Twin Research Vol 7(5) Oct 2004, 513-530.
• Ferron, J., Foster-Johnson, L., & Kromrey, J. D. (2003). The functions of single-case randomization tests with and without random assignment: Journal of Experimental Education Vol 71(3) Spr 2003, 267-288.
• Ferron, J., & Jones, P. K. (2006). Tests for the Visual Analysis of Response-Guided Multiple-Baseline Data: Journal of Experimental Education Vol 75(1) Fal 2006, 66-81.
• Fidalgo, A. M., Ferreres, D., & Muniz, J. (2004). Liberal and Conservative Differential Item Functioning Detection Using Mantel-Haenszel and SIBTEST: Implications for Type I and Type II Error Rates: Journal of Experimental Education Vol 73(1) Fal 2004, 23-39.
• Fidalgo, A. M., Ferreres, D., & Muniz, J. (2004). Utility of the Mantel-Haenszel Procedure for Detecting Differential Item Functioning in Small Samples: Educational and Psychological Measurement Vol 64(6) Dec 2004, 925-936.
• Forster, K. I., & Dickinson, R. G. (1976). More on the Language-as-fixed-effect fallacy: Monte Carlo estimates of error rates for F-sub-1, F-sub-2, and F', and min F': Journal of Verbal Learning & Verbal Behavior Vol 15(2) Apr 1976, 135-142.
• Fouladi, R. T. (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality: Structural Equation Modeling Vol 7(3) 2000, 356-410.
• Gaito, J., & Davis, C. (1985). Response to T. A. Ryan's comments: Canadian Psychology/Psychologie Canadienne Vol 26(1) Jan 1985, 78-79.
• Gamage, J., Mathew, T., & Weerahandi, S. (2004). Generalized p-values and generalized confidence regions for the multivariate Behrens-Fisher problem and MANOVA: Journal of Multivariate Analysis Vol 88(1) Jan 2004, 177-189.
• Games, P. A. (1973). On Gaito's index of estimation to ascertain the effect of unequal n on ANOVA F tests: American Psychologist Vol 28(7) Jul 1973, 624.
• Games, P. A. (1978). A three-factor model encompassing many possible statistical tests on independent groups: Psychological Bulletin Vol 85(1) Jan 1978, 168-182.
• Games, P. A., Keselman, H. J., & Clinch, J. J. (1979). Multiple comparisons of variance heterogeneity: British Journal of Mathematical and Statistical Psychology Vol 32(1) May 1979, 133-142.
• Gelin, M. N. (2005). Type I error rates of the DIF MIMIC approach using Joreskog's covariance matrix with ML and WLS estimation. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Gessaroli, M. E. (1986). A Monte Carlo investigation of the Type 1 error rates of three multivariate tests applied to categorical data: Dissertation Abstracts International.
• Gessaroli, M. E., & De Champlain, A. F. (1996). Using an approximate chi-square statistic to test the number of dimensions underlying the responses to a set of items: Journal of Educational Measurement Vol 33(2) Sum 1996, 157-179.
• Gessaroli, M. E., & Schutz, R. W. (1983). Variable error: Variance-covariance heterogeneity, block size and Type I error rates: Journal of Motor Behavior Vol 15(1) Mar 1983, 74-95.
• Giffin, M. E. (1984). Item bias detection methods for small samples: Dissertation Abstracts International.
• Glas, C. A. W., & Falcon, J. C. S. (2003). A comparison of item-fit statistics for the three-parameter logistic model: Applied Psychological Measurement Vol 27(2) Mar 2003, 87-106.
• Gonzalez-Roma, V., Hernandez, A., & Gomez-Benito, J. (2006). Power and Type I Error of the Mean and Covariance Structure Analysis Model for Detecting Differential Item Functioning in Graded Response Items: Multivariate Behavioral Research Vol 41(1) Jan 2006, 29-53.
• Green, S. B. (1982). Establishing behavioral correlates: The MMPI as a case study: Applied Psychological Measurement Vol 6(2) Spr 1982, 219-224.
• Green, S. B., & Babyak, M. A. (1997). Control of Type I errors with multiple tests of constraints in structural equation modeling: Multivariate Behavioral Research Vol 32(1) 1997, 39-51.
• Green, S. B., Thompson, M. S., & Babyak, M. A. (1998). A Monte Carlo investigation of methods for controlling Type I errors with specification searches in structural equation modeling: Multivariate Behavioral Research Vol 33(3) 1998, 365-383.
• Greer, T., & Dunlap, W. P. (1997). Analysis of variance with ipsative measures: Psychological Methods Vol 2(2) Jun 1997, 200-207.
• Grima, A. M. (1988). An analysis of repeated measures data: An exploration of alternatives: Dissertation Abstracts International.
• Grissom, R. J. (2000). Heterogeneity of variance in clinical data: Journal of Consulting and Clinical Psychology Vol 68(1) Feb 2000, 155-165.
• Haber, M. (1990). Comments on "The test of homogeneity for 2x2 contingency tables: A review of and some personal opinions on the controversy" by G. Camilli: Psychological Bulletin Vol 108(1) Jul 1990, 146-149.
• Hakstian, A. R., Osborne, J. W., & Skakun, E. N. (1974). Comparative assessment of multivariate association in psychological research: Psychological Bulletin Vol 81(12) Dec 1974, 1049-1052.
• Hall, W., & Bird, K. D. (1985). The problem of multiple inference in psychiatric research: Australian and New Zealand Journal of Psychiatry Vol 19(3) Sep 1985, 265-274.
• Hamilton, B. L. (1977). An empirical investigation of the effects of heterogeneous regression slopes in analysis of covariance: Educational and Psychological Measurement Vol 37(3) Fal 1977, 701-712.
• Hancock, G. R. (1999). A sequential Scheffe-type respecification procedure for controlling Type I error in exploratory structural equation model modification: Structural Equation Modeling Vol 6(2) 1999, 158-168.
• Hancock, G. R., Lawrence, F. R., & Nevitt, J. (2000). Type I error and power of latent mean methods and MANOVA in factorially invariant and noninvariant latent variable systems: Structural Equation Modeling Vol 7(4) 2000, 534-556.
• Harwell, M. (1997). An empirical study of Hedge's homogeneity test: Psychological Methods Vol 2(2) Jun 1997, 219-231.
• Harwell, M. R. (1991). Completely randomized factorial analysis of variance using ranks: British Journal of Mathematical and Statistical Psychology Vol 44(2) Nov 1991, 383-401.
• Hawley, J. F. (1980). An empirical study of Type I and Type II error control of selected tests for related correlation coefficients: Dissertation Abstracts International.
• Hayes, A. F., & Cai, L. (2007). Further evaluating the conditional decision rule for comparing two independent means: British Journal of Mathematical and Statistical Psychology Vol 60(2) Nov 2007, 217-244.
• Headrick, T. C. (1997). Type I error and power of the rank transform analysis of covariance. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Hollingsworth, H. H. (1980). An analytical investigation of the effects of heterogeneous regression slopes in analysis of covariance: Educational and Psychological Measurement Vol 40(3) Fal 1980, 611-618.
• Hsiung, T.-H. (1993). Type 1 error rate and power of pairwise multiple comparison procedures for main effects in an additive nonorthogonal two-factor design under heteroscedasticity: Dissertation Abstracts International.
• Hsiung, T.-H., & Olejnik, S. (1994). Contrast analysis for additive non-orthogonal two-factor designs in unequal variance cases: British Journal of Mathematical and Statistical Psychology Vol 47(2) Nov 1994, 337-354.
• Hsu, L. M. (1978). A Poisson method of controlling the maximum tolerable number of Type I errors: Perceptual and Motor Skills Vol 46(1) Feb 1978, 211-218.
• Hubbard, R. (2004). Alphabet Soup Blurring the Distinctions Between p's and alpha 's in Psychological Research: Theory & Psychology Vol 14(3) Jun 2004, 295-327.
• Hubble, L. M. (1984). Univariate analysis of multivariate outcomes in educational psychology: Contemporary Educational Psychology Vol 9(1) Jan 1984, 8-13.
• Huberty, C. J., & Morris, J. D. (1989). Multivariate analysis versus multiple univariate analyses: Psychological Bulletin Vol 105(2) Mar 1989, 302-308.
• Huberty, C. J., & Morris, J. D. (1992). Multivariate analysis versus multiple univariate analyses. Washington, DC: American Psychological Association.
• Hudson, W. W., & Murphy, G. J. (1980). The non-linear relationship between marital satisfaction and stages of the family life cycle: An artifact of Type I errors? : Journal of Marriage & the Family Vol 42(2) May 1980, 263-267.
• Huitema, B. E., McKean, J. W., & McKnight, S. (1999). Autocorrelation effects on least-squares intervention analysis of short time series: Educational and Psychological Measurement Vol 59(5) Oct 1999, 767-786.
• Hulleman, J., & Humphreys, G. W. (2007). Maximizing the power of comparing single cases against a control sample: An argument, a program for making comparisons, and a worked example from the Pyramids and Palm Trees Test: Cognitive Neuropsychology Vol 24(3) May 2007, 279-291.
• Huynh, H. (1978). Some approximate tests for repeated measurement designs: Psychometrika Vol 43(2) Jun 1978, 161-175.
• Jacobs, K. W. (1976). A demonstration of alpha build-up resulting from repeated statistical tests: Southern Journal of Educational Research Vol 10(1) Win 1976, 23-27.
• Jiang, H., & Stout, W. (1998). Improved type I error control and reduced estimation bias for DIF detection using SIBTEST: Journal of Educational and Behavioral Statistics Vol 23(4) Win 1998, 291-322.
• Jodoin, M. G., & Gierl, M. J. (2001). Evaluating type I error and power rates using an effect size measure with the logistic regression procedure for DIF detection: Applied Measurement in Education Vol 14(4) Oct 2001, 329-349.
• Kasuya, E. (2001). Mann-Whitney U test when variances are unequal: Animal Behaviour Vol 61(6) Jun 2001, 1247-1249.
• Kellow, J. T. (2000). Misuse of multivariate analysis of variance in behavioral research: The fallacy of the "protected" F test: Perceptual and Motor Skills Vol 90(3,Pt1) Jun 2000, 917-926.
• Keren, G., & Lewis, C. (1994). The two fallacies of gamblers: Type I and Type II: Organizational Behavior and Human Decision Processes Vol 60(1) Oct 1994, 75-89.
• Keselman, H. J. (1974). Multiple testing and Type I errors: A reply in defense of multifactor designs: American Psychologist Vol 29(10) Oct 1974, 778-779.
• Keselman, H. J. (1994). Stepwise and simultaneous multiple comparison procedures of repeated measures' means: Journal of Educational Statistics Vol 19(2) Sum 1994, 127-162.
• Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2002). A comparison of data analysis strategies for testing omnibus effects in higher-order repeated measures designs: Multivariate Behavioral Research Vol 37(3) Jul 2002, 331-357.
• Keselman, H. J., Algina, J., Kowalchuk, R. K., & Wolfinger, R. D. (1999). A comparison of recent approaches to the analysis of repeated measurements: British Journal of Mathematical and Statistical Psychology Vol 52(1) May 1999, 63-78.
• Keselman, H. J., Cribbie, R., & Holland, B. (1999). The pairwise multiple comparison multiplicity problem: An alternative approach to familywise and comparison wise Type I error control: Psychological Methods Vol 4(1) Mar 1999, 58-69.
• Keselman, H. J., Cribbie, R., & Holland, B. (2002). Controlling the rate of Type I error over a large set of statistical tests: British Journal of Mathematical and Statistical Psychology Vol 55(1) May 2002, 27-40.
• Keselman, H. J., Cribbie, R. A., & Wilcox, R. R. (2002). Pairwise multiple comparison tests when data are nonnormal: Educational and Psychological Measurement Vol 62(3) Jun 2002, 420-434.
• Keselman, H. J., Games, P. A., & Rogan, J. C. (1979). Protecting the overall rate of Type I errors for pairwise comparisons with an omnibus test statistic: Psychological Bulletin Vol 86(4) Jul 1979, 884-888.
• Keselman, H. J., Games, P. A., & Rogan, J. C. (1980). Type I and Type II errors in simultaneous and two-stage multiple comparison procedures: Psychological Bulletin Vol 88(2) Sep 1980, 356-358.
• Keselman, H. J., Games, P. A., & Rogan, J. C. (1981). Correction to Keselman, Games, and Rogan: Psychological Bulletin Vol 90(1) Jul 1981, 20.
• Keselman, H. J., & Keselman, J. C. (1987). Type I error control and the power to detect factorial effects: British Journal of Mathematical and Statistical Psychology Vol 40(2) Nov 1987, 196-208.
• Keselman, H. J., & Keselman, J. C. (1988). Comparing repeated measures means in factorial designs: Psychophysiology Vol 25(5) Sep 1988, 612-618.
• Keselman, H. J., & Keselman, J. C. (1988). Repeated measures multiple comparison procedures: Effects of violating multisample sphericity in unbalanced designs: Journal of Educational Statistics Vol 13(3) Fal 1988, 215-226.
• Keselman, H. J., Keselman, J. C., & Games, P. A. (1991). Maximum familywise Type I error rate: The least significant difference, Newman-Keuls, and other multiple comparison procedures: Psychological Bulletin Vol 110(1) Jul 1991, 155-161.
• Keselman, H. J., Keselman, J. C., & Lix, L. M. (1995). The analysis of repeated measurements: Univariate tests, multivariate tests, or both? : British Journal of Mathematical and Statistical Psychology Vol 48(2) Nov 1995, 319-338.
• Keselman, H. J., Keselman, J. C., & Shaffer, J. P. (1991). Multiple pairwise comparisons of repeated measures means under violation of multisample sphericity: Psychological Bulletin Vol 110(1) Jul 1991, 162-170.
• Keselman, H. J., Kowalchuk, R. K., Algina, J., Lix, L. M., & Wilcox, R. R. (2000). Testing treatment effects in repeated measures designs: Trimmed means and bootstrapping: British Journal of Mathematical and Statistical Psychology Vol 53(2) Nov 2000, 175-191.
• Keselman, H. J., Kowalchuk, R. K., & Boik, R. J. (2000). An examination of the robustness of the empirical Bayes and other approaches for testing main and interaction effects in repeated measures designs: British Journal of Mathematical and Statistical Psychology Vol 53(1) May 2000, 51-67.
• Keselman, H. J., Lix, L. M., & Kowalchuk, R. K. (1998). Multiple comparison procedures for trimmed means: Psychological Methods Vol 3(1) Mar 1998, 123-141.
• Keselman, H. J., Othman, A. R., Wilcox, R. R., & Fradette, K. (2004). The New and Improved Two-Sample t Test: Psychological Science Vol 15(1) Jan 2004, 47-51.
• Keselman, H. J., & Rogan, J. C. (1977). The Tukey multiple comparison test: 1953-1976: Psychological Bulletin Vol 84(5) Sep 1977, 1050-1056.
• Keselman, H. J., Rogan, J. C., & Games, P. A. (1981). Robust tests of repeated measures means in educational and psychological research: Educational and Psychological Measurement Vol 41(1) Spr 1981, 163-173.
• Keselman, H. J., & Toothaker, L. E. (1973). An empirical comparison of the Marascuilo and Normal Scores nonparametric tests and the Scheffe and Tukey Parametric Tests for Pairwise Comparisons: Proceedings of the Annual Convention of the American Psychological Association 1973, 15-16.
• Keselman, H. J., & Toothaker, L. E. (1974). Comparison of Tukey's T-method and Scheffe's S-method for various numbers of all possible differences of averages contrasts under violation of assumptions: Educational and Psychological Measurement Vol 34(3) Fal 1974, 511-519.
• Keselman, H. J., Wilcox, R. R., Lix, L. M., Algina, J., & Fradette, K. (2007). Adaptive robust estimation and testing: British Journal of Mathematical and Statistical Psychology Vol 60(2) Nov 2007, 267-293.
• Keselman, J. C., & Keselman, H. J. (1987). Detecting treatment effects in educational research: Educational and Psychological Measurement Vol 47(4) Win 1987, 903-910.
• Keselman, J. C., Lix, L. M., & Keselman, H. J. (1996). The analysis of repeated measurements: A quantitative research synthesis: British Journal of Mathematical and Statistical Psychology Vol 49(2) Nov 1996, 275-298.
• Khedouri, C. E. (2005). Correcting distortion in global statistical tests with application to psychiatric rehabilitation. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Kiefer-O'Donnell, R. A. (1997). Determination and analysis of Type 1 error and power rates for single subject research: A Monte Carlo simulation. Dissertation Abstracts International Section A: Humanities and Social Sciences.
• Kiesel, A., Miller, J., & Ulrich, R. (2007). Systematic biases and type I error accumulation in tests of the race model inequality: Behavior Research Methods Vol 39(3) Aug 2007, 539-551.
• Kim, C. (1986). An empirical comparison of the power and the robustness of the two independent means t-test and the Mann-Whitney U-test for semantic differential and Likert type scale scores assuming a discretized normal distribution: Dissertation Abstracts International.
• Kim, S.-H., & Cohen, A. S. (1998). Detection of differential item functioning under the graded response model with the likelihood ratio test: Applied Psychological Measurement Vol 22(4) Dec 1998, 345-355.
• Kim, S.-H., Cohen, A. S., & Kim, H.-O. (1994). An investigation of Lord's procedure for the detection of differential item functioning: Applied Psychological Measurement Vol 18(3) Sep 1994, 217-228.
• Klockars, A. J., & Beretvas, S. N. (2001). Analysis of covariance and randomized block design with heterogeneous slopes: Journal of Experimental Education Vol 69(4) Sum 2001, 393-410.
• Klockars, A. J., & Hancock, G. R. (1994). Per-experiment error rates: The hidden costs of several multiple comparison procedures: Educational and Psychological Measurement Vol 54(2) Sum 1994, 292-298.
• Koele, P. (1985). The simultaneous control of type I and type II errors in statistical hypothesis testing: Zeitschrift fur Sozialpsychologie Vol 16(1) 1985, 56-58.
• Kolm, G. P. (1981). An empirical investigation of potential problems in the analysis of developmental data: Dissertation Abstracts International.
• Kowalchuk, R. K., Keselman, H. J., & Algina, J. (2003). Repeated measures interaction test with aligned ranks: Multivariate Behavioral Research Vol 38(4) 2003, 433-461.
• Krauskopf, C. J. (1991). Pattern analysis and statistical power: Psychological Assessment: A Journal of Consulting and Clinical Psychology Vol 3(2) Jun 1991, 261-264.
• Krenz, C. (1989). The impact of skew on Type I error rates: Dissertation Abstracts International.
• Krishnamoorthy, K., & Xia, Y. (2006). On selecting tests for equality of two normal mean vectors: Multivariate Behavioral Research Vol 41(4) 2006, 533-548.
• Kromrey, J. D., & Dickinson, W. B. (1995). The use of an overall F test to control Type I error rates in factorial analyses of variance: Limitations and better strategies: Journal of Applied Behavioral Science Vol 31(1) Mar 1995, 51-64.
• Kromrey, J. D., & Dickinson, W. B. (1996). Detecting unit of analysis problems in nested designs: Statistical power and Type I error rates of the F test for groups-within-treatments effects: Educational and Psychological Measurement Vol 56(2) Apr 1996, 215-231.
• Kubinger, K. D. (2006). Editorial: Psychology Science Vol 48(4) 2006, 403-404.
• Kurita, K. (1999). Robustness of the t test and power analysis for non-independence of observations: A verification of simulation results with actual data: Japanese Journal of Educational Psychology Vol 47(3) Sep 1999, 263-272.
• Lall, V. F., & Levin, J. R. (2004). An empirical investigation of the statistical properties of generalized single-case randomization tests: Journal of School Psychology Vol 42(1) Jan-Feb 2004, 61-86.
• LaLonde, S. M. (1988). Testing equality of means from a repeated measures sample with incomplete data: Dissertation Abstracts International.
• Landa, B. K. (1981). Alternative solutions to the Behrens-Fisher problem: An emperical study of Type I and Type II errors: Dissertation Abstracts International.
• Larrabee, M. J. (1982). Reexamination of a plea for multivariate analyses: Journal of Counseling Psychology Vol 29(2) Mar 1982, 180-188.
• Lashley, B. R., & Bond, C. F., Jr. (1997). Significance testing for round robin data: Psychological Methods Vol 2(3) Sep 1997, 278-291.
• Leary, M. R., & Altmaier, E. M. (1980). Type I error in counseling research: A plea for multivariate analyses: Journal of Counseling Psychology Vol 27(6) Nov 1980, 611-615.
• Lee, C.-H. (2007). A Monte Carlo study of two nonparametric statistics with comparisons of type I error rates and power. Dissertation Abstracts International Section A: Humanities and Social Sciences.
• Lei, P.-W., Chen, S.-Y., & Yu, L. (2006). Comparing methods of assessing differential item functioning in a computerized adaptive testing environment: Journal of Educational Measurement Vol 44(3) Sep 2006, 245-264.
• Lemire, S. D. (2006). An investigation of Type I error rate control for independent variable subset tests with a binary dependent variable using ordinary least squares, logistic regression analysis, and nonparametric regression. Dissertation Abstracts International Section A: Humanities and Social Sciences.
• Leon, A. C. (2004). Multiplicity-Adjusted Sample Size Requirements: A Strategy to Maintain Statistical Power With Bonferroni Adjustments: Journal of Clinical Psychiatry Vol 65(11) Nov 2004, 1511-1514.
• Liou, M. (1993). Exact person tests for assessing model-data fit in the Rasch model: Applied Psychological Measurement Vol 17(2) Jun 1993, 187-195.
• Lissitz, R. W., & Chardos, S. (1975). A study of the effect of the violation of the assumption of independent sampling upon the Type I error rate of the two-group t-test: Educational and Psychological Measurement Vol 35(2) Sum 1975, 353-359.
• Livacic-Rojas, P., Vallejo, G., & Fernandez, P. (2006). Alternative statistical procedures to assess the robustness using repeated measures designs: Revista Latinoamericana de Psicologia Vol 38(3) 2006, 579-598.
• Lix, L. M., & Fouladi, R. T. (2007). Robust step-down tests for multivariate independent group designs: British Journal of Mathematical and Statistical Psychology Vol 60(2) Nov 2007, 245-265.
• Lix, L. M., & Keselman, H. J. (1998). To trim or not to trim: Tests of location equality under heteroscedasticity and nonnormality: Educational and Psychological Measurement Vol 58(3) Jun 1998, 409-429.
• Lix, L. M., & Keselman, H. J. (1998). "To trim or not to trim: Tests of location equality under heteroscedasticity and nonnormality": Errata: Educational and Psychological Measurement Vol 58(5) Oct 1998, 853.
• Long, J. D. (1999). A confidence interval for ordinal multiple regression weights: Psychological Methods Vol 4(3) Sep 1999, 315-330.
• Longman, R. S. (2004). Values for Comparison of WAIS-III Index Scores With Overall Means: Psychological Assessment Vol 16(3) Sep 2004, 323-325.
• Luh, W.-M., & Guo, J.-H. (2001). Transformation works for non-normality? On one-sample transformation trimmed t methods: British Journal of Mathematical and Statistical Psychology Vol 54(2) Nov 2001, 227-236.
• Luh, W.-M., & Guo, J.-H. (2001). Using Johnson's transformation and robust estimators with heteroscedastic test statistics: An examination of the effects of non-normality and heterogeneity in the non-orthogonal two-way ANOVA design: British Journal of Mathematical and Statistical Psychology Vol 54(1) May 2001, 79-94.
• MacDonald, P. L., & Gardner, R. C. (2000). Type I error rate comparisons of post hoc procedures for IxJ chi-square tables: Educational and Psychological Measurement Vol 60(5) Oct 2000, 735-754.
• MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C. M. (2007). Distribution of the product confidence limits for the indirect effect: Program PRODLIN: Behavior Research Methods Vol 39(3) Aug 2007, 384-389.
• MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects: Psychological Methods Vol 7(1) Mar 2002, 83-104.
• MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods: Multivariate Behavioral Research Vol 39(1) Jan 2004, 99-128.
• Manzano, V. (1997). Uses and abuses of type I errors: Psicologica Vol 18(2) 1997, 153-169.
• Marascuilo, L. A. (1966). Large-sample multiple comparisons: Psychological Bulletin Vol 65(5) May 1966, 280-290.
• Maxwell, S. E. (1980). Pairwise multiple comparisons in repeated measures designs: Journal of Educational Statistics Vol 5(3) Fal 1980, 269-287.
• Maxwell, S. E., & Bray, J. H. (1986). Robustness of the Quasi F statistic to violations of sphericity: Psychological Bulletin Vol 99(3) May 1986, 416-421.
• Maxwell, S. E., & Delaney, H. D. (1993). Bivariate median splits and spurious statistical significance: Psychological Bulletin Vol 113(1) Jan 1993, 181-190.
• McArdle, J. J. (1977). An applied Monte Carlo examination of Type I behavior in univariate and multivariate strategies for repeated measures hypotheses: Dissertation Abstracts International.
• McAweeney, M. J., & Klockars, A. J. (1998). Maximizing power in skewed distributions: Analysis and assignment: Psychological Methods Vol 3(1) Mar 1998, 117-122.
• McCarroll, D., Crays, N., & Dunlap, W. P. (1992). Sequential ANOVAs and Type I error rates: Educational and Psychological Measurement Vol 52(2) Sum 1992, 387-393.
• Meca, J. S., & Martinez, F. M. (1997). Meta-analysis of Monte Carlo simulations: Revista de Psicologia Universitas Tarraconensis Vol 19(1) 1997, 29-51.
• Mendro, R. L. (1973). An empirical study of the accuracy of two approximations to the T-method of multiple comparisons after the analysis of covariance: Dissertation Abstracts International Vol.
• Miller, J. (2006). A likelihood ratio test for mixture effects: Behavior Research Methods Vol 38(1) Feb 2006, 92-106.
• Milligan, G. W. (1980). Factors that affect Type I and Type II error rates in the analysis of multidimensional contingency tables: Psychological Bulletin Vol 87(2) Mar 1980, 238-244.
• Milligan, G. W. (1987). The use of the arc-sine transformation in the analysis of variance: Educational and Psychological Measurement Vol 47(3) Fal 1987, 563-573.
• Monahan, P. O., & Ankenmann, R. D. (2005). Effect of Unequal Variances in Proficiency Distributions on type-1 Error of the Mantel-Haenszel Chi-square Test for Differential Item Functioning: Journal of Educational Measurement Vol 42(2) Sum 2005, 101-131.
• Morgan-Lopez, A. A. (2004). A simulation study of the mediated baseline by treatment interaction effect in preventive intervention trials. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Narayanan, P., & Swaminathan, H. (1994). Performance of the Mantel-Haenszel and simultaneous item bias procedures for detecting differential item functioning: Applied Psychological Measurement Vol 18(4) Dec 1994, 315-328.
• Narayanan, P., & Swaminathan, H. (1996). Identification of items that show nonuniform DIF: Applied Psychological Measurement Vol 20(3) Sep 1996, 257-274.
• Neuhauser, M. (2004). Wilcoxon test after Levene's transformation can have an inflated type I error rate: Psychological Reports Vol 94(3,Pt2) Jun 2004, 1419-1420.
• Nevitt, J., & Hancock, G. R. (2004). Evaluating Small Sample Approaches for Model Test Statistics in Structural Equation Modeling: Multivariate Behavioral Research Vol 39(3) 2004, 439-478.
• Nthangeni, M., & Algina, J. (2001). Type I error rate and power of some alternative methods to the independent samples t test: Educational and Psychological Measurement Vol 61(6) Dec 2001, 937-957.
• O'Keefe, D. J. (2003). Colloquy: Should Familywise Alpha Be Adjusted?: Against Familywise Alpha Adjustment: Human Communication Research Vol 29(3) Jul 2003, 431-447.
• Olejnik, S. (1987). Conditional ANOVA for mean differences when population variances are unknown: Journal of Experimental Education Vol 55(3) Spr 1987, 141-148.
• Olejnik, S., Li, J., Supattathum, S., & Huberty, C. J. (1997). Multiple testing and statistical power with modified Bonferroni procedures: Journal of Educational and Behavioral Statistics Vol 22(4) Win 1997, 389-406.
• Olejnik, S. F., & Algina, J. (1988). Tests of variance equality when distributions differ in form and location: Educational and Psychological Measurement Vol 48(2) Sum 1988, 317-329.
• Oshima, T. C., & Algina, J. (1992). Type I error rates for James's second-order test and Wilcox's H-sub(m ) test under heteroscedasticity and non-normality: British Journal of Mathematical and Statistical Psychology Vol 45(2) Nov 1992, 255-263.
• Othman, A. R., Keselman, H. J., Padmanabhan, A. R., Wilcox, R. R., & Fradette, K. (2004). Comparing measures of the 'typical' score across treatment groups: British Journal of Mathematical and Statistical Psychology Vol 57(2) Nov 2004, 215-234.
• Ottenbacher, K. J. (1986). A quantitative analysis of experimentwise error rates in applied behavioral science research: Journal of Applied Behavioral Science Vol 22(4) 1986, 495-501.
• Ottenbacher, K. J. (1991). Statistical conclusion validity: An empirical analysis of multiplicity in mental retardation research: American Journal on Mental Retardation Vol 95(4) Jan 1991, 421-427.
• Overall, J. E., Atlas, R. S., & Gibson, J. M. (1995). Power of a test that is robust against variance hetergeneity: Psychological Reports Vol 77(1) Aug 1995, 155-159.
• Overall, J. E., & Hornick, C. W. (1982). An evaluation of power and sample-size requirements for the continuity-corrected Fisher exact test: Perceptual and Motor Skills Vol 54(1) Feb 1982, 83-86.
• Overall, J. E., Rhoades, H. M., & Starbuck, R. R. (1987). Small-sample tests for homogeneity of response probabilities in 2x2 contingency tables: Psychological Bulletin Vol 102(2) Sep 1987, 307-314.
• Overall, J. E., & Shivakumar, C. (1999). Testing differences in response trends across a normalized time domain: Journal of Clinical Psychology Vol 55(7) Jul 1999, 857-867.
• Paunonen, S. V., & Jackson, D. N. (1988). Type I error rates for moderated multiple regression analysis: Journal of Applied Psychology Vol 73(3) Aug 1988, 569-573.
• Pavur, R., & Nath, R. (1989). Power and Type I error rates for rank-score MANOVA techniques: Multivariate Behavioral Research Vol 24(4) Oct 1989, 477-501.
• Penfield, D. A. (1994). Choosing a two-sample location test: Journal of Experimental Education Vol 62(4) Sum 1994, 343-360.
• Penfield, R. D. (2003). Applying the Breslow-Day Test of Trend in Odds Ratio Heterogeneity to the Analysis of Nonuniform DIP: Alberta Journal of Educational Research Vol 49(3) Fal 2003, 231-243.
• Pollard, P. (1993). How significant is "significance?" Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.
• Pollard, P., & Richardson, J. T. (1987). On the probability of making Type I errors: Psychological Bulletin Vol 102(1) Jul 1987, 159-163.
• Powell, D. A., & Shafer, W. D. (2001). The robustness of the likelihood ratio chi-square test for structural equation models: A meta-analysis: Journal of Educational and Behavioral Statistics Vol 26(1) Spr 2001, 105-132.
• Rae, G. (1982). A Monte Carlo comparison of small sample procedures for testing the hypothesis that two variables measure the same trait except for errors of measurement: British Journal of Mathematical and Statistical Psychology Vol 35(2) Nov 1982, 228-232.
• Rae, G. (1997). Sampling behaviour of kappa and weighted kappa in the null case: British Journal of Mathematical and Statistical Psychology Vol 50(1) May 1997, 1-7.
• Ramsey, P. H. (1980). Exact Type I error rates for robustness of student's t test with unequal variances: Journal of Educational Statistics Vol 5(4) Win 1980, 337-349.
• Ramsey, P. H. (1981). Power of univariate pairwise multiple comparison procedures: Psychological Bulletin Vol 90(2) Sep 1981, 352-366.
• Ramsey, P. H., & Ramsey, P. P. (1988). Evaluating the normal approximation to the binomial test: Journal of Educational Statistics Vol 13(2) Sum 1988, 173-182.
• Ramsey, P. P. (1978). An empirical investigation of Type I error under conditions of heterogeneity of variance and sample size: The one way fixed effects model: Dissertation Abstracts International.
• Rasmussen, J. L. (1986). An evaluation of parametric and non-parametric tests on modified and non-modified data: British Journal of Mathematical and Statistical Psychology Vol 39(2) Nov 1986, 213-220.
• Rasmussen, J. L. (1987). Estimating correlation coefficients: Bootstrap and parametric approaches: Psychological Bulletin Vol 101(1) Jan 1987, 136-139.
• Rasmussen, J. L. (1987). Parametric and bootstrap approaches to repeated measures designs: Behavior Research Methods, Instruments & Computers Vol 19(4) Aug 1987, 357-360.
• Rasmussen, J. L. (1988). Evaluation of small-sample statistics that test whether variables measure the same trait: Applied Psychological Measurement Vol 12(2) Jun 1988, 177-187.
• Rasmussen, J. L. (1989). Analysis of Likert-scale data: A reinterpretation of Gregoire and Driver: Psychological Bulletin Vol 105(1) Jan 1989, 167-170.
• Rasmussen, J. L. (1989). Data transformation, Type I error rate and power: British Journal of Mathematical and Statistical Psychology Vol 42(2) Nov 1989, 203-213.
• Rasmussen, J. L. (1989). A Monte Carlo evaluation of Bobko's ordinal interaction analysis technique: Journal of Applied Psychology Vol 74(2) Apr 1989, 242-246.
• Rasmussen, J. L. (1989). Parametric and non-parametric analysis of groups by trials design under variance-covariance inhomogeneity: British Journal of Mathematical and Statistical Psychology Vol 42(1) May 1989, 91-102.
• Rasmussen, J. L. (1991). Data transformation and absenteeism: Methodika Vol 5 1991, 47-62.
• Rasmussen, J. L., Heumann, K. A., Heumann, M. T., & Botzum, M. (1989). Univariate and multivariate groups by trials analysis under violation of variance-covariance and normality assumptions: Multivariate Behavioral Research Vol 24(1) Jan 1989, 93-105.
• Rasmussen, J. L., & Loher, B. T. (1988). Appropriate critical percentages for the Schmidt and Hunter meta-analysis procedure: Comparative evaluation of Type I error rate and power: Journal of Applied Psychology Vol 73(4) Nov 1988, 683-687.
• Raykov, T. (1997). Scale reliability, Cronbach's Coefficient Alpha, and violations of essential tau-equivalence with fixed congeneric components: Multivariate Behavioral Research Vol 32(4) 1997, 329-353.
• Reddon, J. R. (1987). Fisher's tanh-super(-2 ) transformation of the correlation coefficient and a test for complete independence in a multivariate normal population: Journal of Educational Statistics Vol 12(3) Fal 1987, 294-300.
• Reddon, J. R., Jackson, D. N., & Schopflocher, D. (1985). Distribution of the determinant of the sample correlation matrix: Monte Carlo type one error rates: Journal of Educational Statistics Vol 10(4) Win 1985, 384-388.
• Refinetti, R. (1996). Demonstrating the consequences of violations of assumptions in between-subjects analysis of variance: Teaching of Psychology Vol 23(1) Feb 1996, 51-54.
• Renner, B. R., & Ball, D. W. (1983). The effects of unequal covariances on the Tukey WSD test: Educational and Psychological Measurement Vol 43(1) Spr 1983, 27-34.
• Rheinheimer, D. C. (1999). The effects on Type I error rate and power of the ANCOVA F-test and selected alternatives under non-normality and variance heterogeneity. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Rheinheimer, D. C., & Penfield, D. A. (2001). The effects of Type I error rate and power of ANCOVA F test and selected alternatives under nonnormality and variance heterogeneity: Journal of Experimental Education Vol 69(4) Sum 2001, 373-391.
• Rhoades, H. M., & Overall, J. E. (1982). A sample size correction for Pearson chi-square in 2x2 contingency tables: Psychological Bulletin Vol 91(2) Mar 1982, 418-423.
• Robey, R. R. (1985). A Monte Carlo investigation of Type I error in the analysis of variance for the single group repeated measures design with multiple measures per occasion: Dissertation Abstracts International.
• Robey, R. R., & Barcikowski, R. S. (1992). Type I error and the number of iterations in Monte Carlo studies of robustness: British Journal of Mathematical and Statistical Psychology Vol 45(2) Nov 1992, 283-288.
• Rogan, J. C. (1978). A comparison of univariate and multivariate analysis strategies for repeated measures designs: Dissertation Abstracts International.
• Rogan, J. C., & Keselman, H. J. (1977). Is the ANOVA F-test robust to variance heterogeneity when sample sizes are equal? An investigation via a coefficient to variation: American Educational Research Journal Vol 14(4) Fal 1977, 493-498.
• Rogan, J. C., Keselman, H. J., & Mendoza, J. L. (1979). Analysis of repeated measurements: British Journal of Mathematical and Statistical Psychology Vol 32(2) Nov 1979, 269-286.
• Rogers, R. L. (1973). Category width and decision making in perception: Perceptual and Motor Skills Vol 37(2) Oct 1973, 647-652.
• Rosenthal, R. (1979). The file drawer problem and tolerance for null results: Psychological Bulletin Vol 86(3) May 1979, 638-641.
• Rosenthal, R., & Rubin, D. B. (1984). Multiple contrasts and ordered Bonferroni procedures: Journal of Educational Psychology Vol 76(6) Dec 1984, 1028-1034.
• Roussos, L. A., & Stout, W. F. (1996). Simulation studies of the effects of small sample size and studied item parameters on SIBTEST and Mantel-Haenszel Type I error performance: Journal of Educational Measurement Vol 33(2) Sum 1996, 215-230.
• Russell, S. S. (2005). Estimates of Type I error and power for indices of differential bundle and test functioning. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Ryan, T. A. (1985). Comments on: "Multiple comparison procedures within experimental research" by Caroline Davis and John Gaito: Canadian Psychology/Psychologie Canadienne Vol 26(1) Jan 1985, 75-78.
• Ryan, T. A. (1985). "Ensemble-adjusted p values": How are they to be weighted? : Psychological Bulletin Vol 97(3) May 1985, 521-526.
• Sanchez-Meca, J., & Marin-Martinez, F. (1998). Testing continuous moderators in meta-analysis: A comparison of procedures: British Journal of Mathematical and Statistical Psychology Vol 51(2) Nov 1998, 311-326.
• Sato, T. (1996). Type I and Type II error in multiple comparisons: Journal of Psychology: Interdisciplinary and Applied Vol 130(3) May 1996, 293-302.
• Sawilowsky, S. S., & Blair, R. C. (1992). A more realistic look at the robustness and Type II error properties of the t test to departures from population normality: Psychological Bulletin Vol 111(2) Mar 1992, 352-360.
• Sawilowsky, S. S., Blair, R. C., & Higgins, J. J. (1989). An investigation of the Type I error and power properties of the rank transform procedure in factorial ANOVA: Journal of Educational Statistics Vol 14(3) Fal 1989, 255-267.
• Sawilowsky, S. S., & Hillman, S. B. (1992). Power of the independent samples t test under a prevalent psychometric measure distribution: Journal of Consulting and Clinical Psychology Vol 60(2) Apr 1992, 240-243.
• Schafer, W. D., & Dayton, C. M. (1981). Techniques for simultaneous inference: Personnel & Guidance Journal Vol 59(10) Jun 1981, 631-636.
• Schooler, L. J., & Shiffrin, R. M. (2005). Efficiently measuring recognition performance with sparse data: Behavior Research Methods Vol 37(1) Feb 2005, 3-10.
• Schuster, C., & von Eye, A. (2000). Using Log-Linear Modeling to increase power in two-sample Configural Frequency Analysis: Psychologische Beitrage Vol 42(3) 2000, 273-284.
• Seaman, M. A., Levin, J. R., & Serlin, R. C. (1991). New developments in pairwise multiple comparisons: Some powerful and practicable procedures: Psychological Bulletin Vol 110(3) Nov 1991, 577-586.
• Seaman, S. L., Algina, J., & Olejnik, S. F. (1985). Type I error probabilities and power of the rank and parametric ANCOVA procedures: Journal of Educational Statistics Vol 10(4) Win 1985, 345-367.
• Seco, G. V., Fuente, I. M. d. l., & Garcia, P. F. (1999). Multiple comparison procedures for simple one-way ANOVA with dependent data: The Spanish Journal of Psychology Vol 2(1) May 1999, 55-63.
• Seco, G. V., Gras, J. A., & Garcia, M. A. (2007). Comparative robustness of recent methods for analyzing multivariate repeated measures designs: Educational and Psychological Measurement Vol 67(3) Jun 2007, 410-432.
• Serlin, R. C. (2000). Testing for robustness in Monte Carlo studies: Psychological Methods Vol 5(2) Jun 2000, 230-240.
• Shaffer, J. P. (2002). Multiplicity, directional (Type III) errors, and the Null Hypothesis: Psychological Methods Vol 7(3) Sep 2002, 356-369.
• Sheehan, J. J., & Drury, C. G. (1971). The analysis of industrial inspection: Applied Ergonomics Vol 2(2) Jun 1971, 74-78.
• Sheehan-Holt, J. K. (1998). MANOVA simultaneous test procedures: The power and robustness of restricted multivariate contrasts: Educational and Psychological Measurement Vol 58(6) Dec 1998, 861-881.
• Shine, L. C. (1979). The conservativeness and power of F tests based on the Shine-Bower error term: Educational and Psychological Measurement Vol 39(3) Fal 1979, 537-541.
• Shine, L. C. (1980). The fallacy of replacing an a priori significance level with an a posteriori significance level: Educational and Psychological Measurement Vol 40(2) Sum 1980, 331-335.
• Sierra, V., Quera, V., & Solanas, A. (2000). Autocorrelation effect on type I error rate of Revusky's R-sub(n ) test: A Monte Carlo study: Psicologica Vol 21(1-2) 2000, 91-114.
• Sierra, V., Solanas, A., & Quera, V. (2005). Randomization Tests for Systematic Single-Case Designs Are Not Always Appropriate: Journal of Experimental Education Vol 73(2) Win 2005, 140-160.
• Silver, N. C., & Dunlap, W. P. (1989). A Monte Carlo study of testing the significance of correlation matrices: Educational and Psychological Measurement Vol 49(3) Fal 1989, 563-569.
• Silver, N. C., Hittner, J. B., & May, K. (2004). Testing Dependent Correlations With Nonoverlapping Variables: A Monte Carlo Simulation: Journal of Experimental Education Vol 73(1) Fal 2004, 53-69.
• Silverstein, A. B. (1993). Type I, Type II, and other types of errors in pattern analysis: Psychological Assessment Vol 5(1) Mar 1993, 72-74.
• Sinharay, S. (2006). Bayesian item fit analysis for unidimensional item response theory models: British Journal of Mathematical and Statistical Psychology Vol 59(2) Nov 2006, 429-449.
• Smith, R. A., Levine, T. R., Lachlan, K. A., & Fediuk, T. A. (2002). The high cost of complexity in experimental design and data analysis: Type I and Type II error rates in multiway ANOVA: Human Communication Research Vol 28(4) Oct 2002, 515-530.
• Smith, R. M. (1994). Detecting item bias in the Rasch rating scale model: Educational and Psychological Measurement Vol 54(4) Win 1994, 886-896.
• Sotaridona, L. S., & Meijer, R. R. (2002). Statistical properties of the K-index for detecting answer copying: Journal of Educational Measurement Vol 39(2) Sum 2002, 115-132.
• Spector, P. E., & Levine, E. L. (1987). Meta-analysis for integrating study outcomes: A Monte Carlo study of its susceptibility to Type I and Type II errors: Journal of Applied Psychology Vol 72(1) Feb 1987, 3-9.
• Spector, P. E., Voissem, N. H., & Cone, W. L. (1981). A Monte Carlo study of three approaches to nonorthogonal analysis of variance: Journal of Applied Psychology Vol 66(5) Oct 1981, 535-540.
• Steiger, J. H. (1980). Testing pattern hypotheses on correlation matrices: Alternative statistics and some empirical results: Multivariate Behavioral Research Vol 15(3) Jul 1980, 335-352.
• Steinfatt, T. M. (1990). Ritual versus logic in significance testing in communication research: Communication Research Reports Vol 7(2) Dec 1990, 90-93.
• Stelzl, I. (1985). A deficient evaluation of single-case data: A criticism of Petermann's suggestions for the use of DEL analysis as nonparametric time series analysis: Zeitschrift fur Klinische Psychologie Vol 14(2) 1985, 145-152.
• Stevens, J. (1979). Comment on Olson: Choosing a test statistic in multivariate analysis of variance: Psychological Bulletin Vol 86(2) Mar 1979, 355-360.
• Stone, C. A. (2003). Empirical power and Type I error rates for an IRT fit statistic that considers the precision of ability estimates: Educational and Psychological Measurement Vol 63(4) Aug 2003, 566-583.
• Stone, C. A., & Zhang, B. (2003). Assessing goodness of fit of item response theory models: A comparison of traditional and alternative procedures: Journal of Educational Measurement Vol 40(4) Win 2003, 331-352.
• Strahan, R. F. (1982). Multivariate analysis and the problem of Type I error: Journal of Counseling Psychology Vol 29(2) Mar 1982, 175-179.
• Streiner, D. L. (1993). An introduction to multivariate statistics: The Canadian Journal of Psychiatry / La Revue canadienne de psychiatrie Vol 38(1) Feb 1993, 9-13.
• Sturman, M. C. (1999). Multiple approaches to analyzing count data in studies of individual differences: The propensity for Type I errors, illustrated with the case of absenteeism prediction: Educational and Psychological Measurement Vol 59(3) Jun 1999, 414-430.
• Tachibana, T. (1985). Litter effects in open-field behavior and distortion of Type I error rate with individual animals as the unit of statistical analysis: Psychological Reports Vol 57(1) Aug 1985, 87-90.
• Tai, S.-y. W., & Pohl, N. F. (1979). CHI-B: An interactive BASIC program for analyzing the power of chi-square tests: Behavior Research Methods & Instrumentation Vol 11(3) Jun 1979, 404.
• Tang, K. L., & Algina, J. (1993). Performance of four multivariate tests under variance-covariance heteroscedasticity: Multivariate Behavioral Research Vol 28(4) 1993, 391-405.
• Thissen, D., Steinberg, L., & Kuang, D. (2002). Quick and easy implementaion of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons: Journal of Educational and Behavioral Statistics Vol 27(1) Spr 2002, 77-83.
• Thomas, D. R., & Decady, Y. J. (2004). Testing for Association Using Multiple Response Survey Data: Approximate Procedures Based on the Rao-Scott Approach: International Journal of Testing Vol 4(1) 2004, 43-59.
• Thornton, B. W. (1976). An empirical investigation of four normative methods of treating ipsative data: Dissertation Abstracts International.
• Thye, S. R. (2000). Reliability in experimental psychology: Social Forces Vol 78(4) Jun 2000, 1277-1309.
• Tollenaar, N., & Mooijaart, A. (2003). Type I errors and power of the parametric bootstrap goodness-of-fit test: Full and limited information: British Journal of Mathematical and Statistical Psychology Vol 56(2) Nov 2003, 271-288.
• Tomarken, A. J., & Serlin, R. C. (1986). Comparison of ANOVA alternatives under variance heterogeneity and specific noncentrality structures: Psychological Bulletin Vol 99(1) Jan 1986, 90-99.
• Toothaker, L. E., & Malick, C. (1975). On "the statistic with the smaller critical value." Psychological Bulletin Vol 82(4) Jul 1975, 541-542.
• Tubsaeng, W. (1986). An empirical comparison of the Pearson-!X-2 and Kolmogorov-Smirnov goodness-of-fit tests: Dissertation Abstracts International.
• Tutzauer, F. (2003). On the Sensible Application of Familywise Alpha Adjustment: Human Communication Research Vol 29(3) Jul 2003, 455-463.
• Uttaro, T., & Millsap, R. E. (1994). Factors influencing the Mantel-Haenszel procedure in the detection of differential item functioning: Applied Psychological Measurement Vol 18(1) Mar 1994, 15-25.
• Vallejo, G., Arnau, J., Bono, R., Cuesta, M., Fernandez, P., & Herrero, J. (2002). Analysis of trans-sectional short time-series designs by means of parametric and nonparametric procedures: Metodologia de las Ciencias del Comportamiento Vol 4(2) 2002, 301-323.
• Vallejo, G., & Ato, M. (2006). Modified Brown-Forsythe Procedure for testing interaction effects in split-plot designs: Multivariate Behavioral Research Vol 41(4) 2006, 549-578.
• Vallejo, G., & Livacic-Rojas, P. (2005). Comparison of Two Procedures for Analyzing Small Sets of Repeated Measures Data: Multivariate Behavioral Research Vol 40(2) Apr 2005, 179-205.
• Vallejo, G., & Menendez, I. (1998). The effects of dependence among the observations in several multiple comparison procedures: Psicologica Vol 19(1) 1998, 53-71.
• Van Breukelen, G. J. P., & Van Dijk, K. R. A. (2007). Use of covariates in randomized controlled trials: Journal of the International Neuropsychological Society Vol 13(5) Sep 2007, 903-904.
• Velicer, W. F., Peacock, A. C., & Jackson, D. N. (1982). A comparison of component and factor patterns: A Monte Carlo approach: Multivariate Behavioral Research Vol 17(3) Jul 1982, 371-388.
• Vergoz-Rekis, C. (1986). Nonorthogonal factors in the analysis of variance: A Monte Carlo study of Type I error rates when factors are correlated: Dissertation Abstracts International.
• Viechtbauer, W. (2007). Hypothesis tests for population heterogeneity in meta-analysis: British Journal of Mathematical and Statistical Psychology Vol 60(1) May 2007, 29-60.
• Von Weber, S. (2000). A comparison of tests used in the CFA by simulation: Psychologische Beitrage Vol 42(3) 2000, 260-272.
• Vuotto, G. P. (1979). A comparison of Type I error rates for selected post hoc techniques in a one-way MANOVA design: Dissertation Abstracts International.
• Walters, E., Markley, R. P., & Tiffany, D. W. (1975). Lunacy: A Type I error? : Journal of Abnormal Psychology Vol 84(6) Dec 1975, 715-717.
• Wang, W.-C., & Yeh, Y.-L. (2003). Effects of Anchor Item Methods on Differential Item Functioning Detection With the Likelihood Ratio Test: Applied Psychological Measurement Vol 27(6) Nov 2003, 479-498.
• Watts, T. M. (1979). Indices of cheating on multiple-choice tests: Simulation and evaluation: Dissertation Abstracts International.
• Wells, C. S., & Bolt, D. M. (2008). Investigation of a nonparametric procedure for assessing goodness-of-fit in item response theory: Applied Measurement in Education Vol 21(1) Jan-Mar 2008, 22-40.
• Westermann, R., & Hager, W. (1986). Error probabilities in educational and psychological research: Journal of Educational Statistics Vol 11(2) Sum 1986, 117-146.
• Whitney, D. R., & Feldt, L. S. (1973). Analyzing questionnaire results: Multiple tests of hypotheses and multivariate hypotheses: Educational and Psychological Measurement Vol 33(2) Sum 1973, 365-380.
• Wike, E. L., & Church, J. D. (1977). Further comments on nonparametric multiple-comparison tests: Perceptual and Motor Skills Vol 45(3, Pt 1) Dec 1977, 917-918.
• Wilcox, R. R. (1987). A heteroscedastic ANOVA procedure with specified power: Journal of Educational Statistics Vol 12(3) Fal 1987, 271-281.
• Wilcox, R. R. (1991). Bootstrap inferences about the correlation and variances of paired data: British Journal of Mathematical and Statistical Psychology Vol 44(2) Nov 1991, 379-382.
• Wilcox, R. R. (2001). Pairwise comparisons of trimmed means for two or more groups: Psychometrika Vol 66(3) Sep 2001, 343-356.
• Wilcox, R. R. (2003). Multiple hypothesis testing based on the ordinary least squares progression estimator when there is heteroscedasticity: Educational and Psychological Measurement Vol 63(5) Oct 2003, 758-764.
• Wilcox, R. R. (2004). A multivariate projection-type analogue of the Wilcoxon-Mann-Whitney test: British Journal of Mathematical and Statistical Psychology Vol 57(2) Nov 2004, 205-213.
• Wilcox, R. R. (2004). Some results on extensions and modifications of the Theil-Sen regression estimator: British Journal of Mathematical and Statistical Psychology Vol 57(2) Nov 2004, 265-280.
• Wilcox, R. R. (2006). Testing the Hypothesis of a Homoscedastic Error Term in Simple, Nonparametric Regression: Educational and Psychological Measurement Vol 66(1) Feb 2006, 85-92.
• Wilcox, R. R., & Keselman, H. J. (2003). Repeated measures one-way ANOVA based on a modified one-step M-estimator: British Journal of Mathematical and Statistical Psychology Vol 56(1) May 2003, 15-25.
• Wilcox, R. R., Keselman, H. J., & Kowalchuk, R. K. (1998). Can tests for treatment group equality be improved?: The bootstrap and trimmed means conjecture: British Journal of Mathematical and Statistical Psychology Vol 51(1) May 1998, 123-134.
• Wilcox, R. R., & Muska, J. (2001). Inferences about correlations when there is heteroscedasticity: British Journal of Mathematical and Statistical Psychology Vol 54(1) May 2001, 39-47.
• Wilkerson, M., & Olson, M. R. (1997). Misconceptions about sample size, statistical significance, and treatment effect: Journal of Psychology: Interdisciplinary and Applied Vol 131(6) Nov 1997, 627-631.
• Wollack, J. A. (2003). Comparison of answer copying indices with real data: Journal of Educational Measurement Vol 40(3) Fal 2003, 189-205.
• Wollack, J. A., & Cohen, A. S. (1998). Detection of answer coping with unknown item and trait parameters: Applied Psychological Measurement Vol 22(2) Jun 1998, 144-152.
• Wollack, J. A., Cohen, A. S., & Serlin, R. C. (2001). Defining error rates and power for detecting answer answer copying: Applied Psychological Measurement Vol 25(4) Dec 2001, 385-404.
• Yoder, P. J., & Tapp, J. (2004). Empirical Guidance for Time-Window Sequential Analysis of Single Cases: Journal of Behavioral Education Vol 13(4) Dec 2004, 227-246.
• Yu, W.-C. (1995). Correlated errors in fixed-effects analysis of variance. Dissertation Abstracts International: Section B: The Sciences and Engineering.
• Zenhausern, R. (1974). Damn lies or statistics? : Journal of the American Society for Psychical Research Vol 68(3) 1974, 281-296.
• Zentall, T. R., & Singer, R. A. (2007). Within-trial contrast: When is a failure to replicate not a Type I error? : Journal of the Experimental Analysis of Behavior Vol 87(3) May 2007, 401-404.
• Zhou, D. X. (2004). A Type I error investigation of modified Scheffe-based multiple-comparison procedures in factorial ANOVA, MANOVA, and multiple-regression situations. Dissertation Abstracts International Section A: Humanities and Social Sciences.
• Zimmerman, D. W. (1994). A note on the F test for equal variances under violation of random sampling: Journal of General Psychology Vol 121(1) Jan 1994, 77-83.
• Zimmerman, D. W. (1994). A note on the influence of outliers on Parametric and Nonparametric tests: Journal of General Psychology Vol 121(4) Oct 1994, 391-401.
• Zimmerman, D. W. (1996). Some properties of preliminary tests of equality of variances in the two-sample location problem: Journal of General Psychology Vol 123(3) Jul 1996, 217-231.
• Zimmerman, D. W. (2002). A warning about statistical significance tests performed on large samples of nonindependent observations: Perceptual and Motor Skills Vol 94(1) Feb 2002, 259-263.
• Zimmerman, D. W. (2003). A warning about the large-sample Wilcoxon-Mann-Whitney test: Understanding Statistics Vol 2(4) Oct 2003, 267-280.
• Zimmerman, D. W. (2004). Inflation of Type I Error Rates by Unequal Variances Associated with Parametric, Nonparametric, and Rank-Transformation Tests: Psicologica Vol 25(1) 2004, 103-133.
• Zimmerman, D. W., Williams, R. H., & Zumbo, B. D. (1992). Correction of the Student t statistic for nonindependence of sample observations: Perceptual and Motor Skills Vol 75(3, Pt 1) Dec 1992, 1011-1020.
• Zinkgraf, S. A. (1981). The statistical effects of the misidentification of selected stationary time series models: Dissertation Abstracts International.
• Zumbo, B. D. (1996). Randomization test for coupled data: Perception & Psychophysics Vol 58(3) Apr 1996, 471-478.
• Zwick, R. (1986). Rank and normal scores alternatives to Hotelling's Tsuperscript 2: Multivariate Behavioral Research Vol 21(2) Apr 1986, 169-186.
• Zwick, R. (1993). Pairwise comparison procedures for one-way analysis of variance designs. Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.
• Zwick, R., & Marascuilo, L. A. (1984). Selection of pairwise multiple comparison procedures for parametric and nonparametric analysis of variance models: Psychological Bulletin Vol 95(1) Jan 1984, 148-155.