Trial and error learning

34,200pages on
this wiki

This banner appears on articles that are weak and whose contents should be approached with academic caution
.

Trial and error, or trial by error, is a general method of problem solving for obtaining knowledge, both propositional knowledge and know-how. In the field of computer science, the method is called generate and test. In elementary algebra, when solving equations, it is "guess and check".

This approach can be seen as one of the two basic approaches to problem solving and is contrasted with an approach using insight and theory.

Process

In trial and error, one selects a possible answer, applies it to the problem and, if it is not successful, selects (or generates) another possibility that is subsequently tried. The process ends when a possibility yields a solution.

In some versions of trial and error, the option that is a priori viewed as the most likely one should be tried first, followed by the next most likely, and so on until a solution is found, or all the options are exhausted. In other versions, options are simply tried at random.

Methodology

This approach is most successful with simple problems and in games, and is often resorted to when no apparent rule applies. This does not mean that the approach need be careless, for an individual can be methodical in manipulating the variables in an effort to sort through possibilities that may result in success. Nevertheless, this method is often used by people who have little knowledge in the problem area.

Features

Trial and error has a number of features:

• solution-oriented: trial and error makes no attempt to discover why a solution works, merely that it is a solution.
• problem-specific: trial and error makes no attempt to generalise a solution to other problems.
• non-optimal: trial and error is an attempt to find a solution, not all solutions, and not the best solution.
• needs little knowledge: trial and error can proceed where there is little or no knowledge of the subject.

Examples

Trial and error has traditionally been the main method of finding new drugs, such as antibiotics. Chemists simply try chemicals at random until they find one with the desired effect.

The scientific method can be regarded as containing an element of trial and error in its formulation and testing of hypotheses. Also compare genetic algorithms, simulated annealing and reinforcement learning - all varieties for search which apply the basic idea of trial and error.

Biological Evolution is also a form of trial and error. Random mutations and sexual genetic variations can be viewed as trials and poor reproductive fitness as the error. Thus after a long time 'knowledge' of well-adapted genomes accumulates simply by virtue of them being able to reproduce.

Bogosort can be viewed as a trial and error approach to sorting a list.

In mathematics the method of trial and error can be used to solve formulae - it is a slower, less precise method than algebra, but is easier to understand.

References

Learning
Types of learning
Avoidance conditioning | Classical conditioning | Confidence-based learning | Discrimination learning | Emulation | Experiential learning | Escape conditioning | Incidental learning |Intentional learning | Latent learning | Maze learning | Mastery learning | Mnemonic learning | Nonassociative learning | Nonreversal shift learning | Nonsense syllable learning | Nonverbal learning | Observational learning | Omission training | Operant conditioning | Paired associate learning | Perceptual motor learning | Place conditioning | Probability learning | Rote learning | Reversal shift learning | Second-order conditioning | Sequential learning | Serial anticipation learning | Serial learning | Skill learning | Sidman avoidance conditioning | Social learning | Spatial learning | State dependent learning | Social learning theory | State-dependent learning | Trial and error learning | Verbal learning
Concepts in learning theory
Chaining | Cognitive hypothesis testing | Conditioning | Conditioned responses | Conditioned stimulus | Conditioned suppression | Constant time delay | Counterconditioning | Covert conditioning | Counterconditioning | Delayed alternation | Delay reduction hypothesis | Discriminative response | Distributed practice |Extinction | Fast mapping | Gagné's hierarchy | Generalization (learning) | Generation effect (learning) | Habits | Habituation | Imitation (learning) | Implicit repetition | Interference (learning) | Interstimulus interval | Intermittent reinforcement | Latent inhibition | Learning schedules | Learning rate | Learning strategies | Massed practice | Modelling | Negative transfer | Overlearning | Practice | Premack principle | Preconditioning | Primacy effect | Primary reinforcement | Principles of learning | Prompting | Punishment | Recall (learning) | Recency effect | Recognition (learning) | Reconstruction (learning) | Reinforcement | Relearning | Rescorla-Wagner model | Response | Reinforcement | Secondary reinforcement | Sensitization | Serial position effect | Serial recall | Shaping | Stimulus | Reinforcement schedule | Spontaneous recovery | State dependent learning | Stimulus control | Stimulus generalization | Transfer of learning | Unconditioned responses | Unconditioned stimulus
Animal learning
Cat learning | Dog learning  Rat learning
Neuroanatomy of learning
Neurochemistry of learning
Learning in clinical settings
Applied Behavior Analysis | Behaviour therapy | Behaviour modification | Delay of gratification | CBT | Desensitization | Exposure Therapy | Exposure and response prevention | Flooding | Graded practice | Habituation | Learning disabilities | Reciprocal inhibition therapy | Systematic desensitization | Task analysis | Time out
Learning in education
Adult learning | Cooperative learning | Constructionist learning | Experiential learning | Foreign language learning | Individualised instruction | Learning ability | Learning disabilities | Learning disorders | Learning Management | Learning styles | Learning theory (education) | Learning through play | School learning | Study habits
Machine learning
Temporal difference learning | Q-learning
Philosophical context of learning theory
Behaviourism | Connectionism | Constructivism | Functionalism | Logical positivism | Radical behaviourism
Prominant workers in Learning Theory|-
Pavlov | Hull | Tolman | Skinner | Bandura | Thorndike | Skinner | Watson
Miscellaneous|-
Category:Learning journals | Melioration theory
edit