Psychology Wiki
(New page: {{BioPsy}} <!-- Here is a table of data; skip past it to edit the text. --> {| border="1" cellpadding="2" cellspacing="0" align="right" | colspan="2" align="center" | '''Tetrahydrocannabi...)
 
m (fixing dead links)
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
{{BioPsy}}
 
{{BioPsy}}
 
<!-- Here is a table of data; skip past it to edit the text. -->
 
<!-- Here is a table of data; skip past it to edit the text. -->
  +
{{Drugbox
  +
| Verifiedfields = changed
  +
| Watchedfields = changed
  +
| verifiedrevid = 420242758
  +
| IUPAC_name = (−)-(6a''R'',10a''R'')-6,6,9-trimethyl-<br />3-pentyl-6a,7,8,10a-tetrahydro-<br />6''H''-benzo[''c'']chromen-1-ol
  +
| image = Tetrahydrocannabinol.svg
  +
| width = 200px
  +
| image2 = Delta-9-tetrahydrocannabinol-from-tosylate-xtal-3D-balls.png
  +
| drug_name = Tetrahydrocannabinol
  +
<!--Clinical data-->
  +
| licence_EU = <!-- EMEA requires brand name -->
  +
| licence_US = <!-- FDA may use generic name -->
  +
| pregnancy_AU = <!-- A / B1 / B2 / B3 / C / D / X -->
  +
| pregnancy_US = <!-- A / B / C / D / X -->
  +
| pregnancy_category = C
  +
| legal_AU = Schedule 8
  +
| legal_CA = [[Controlled Drugs and Substances Act|Schedule II]] ([[Canada|CA]])
  +
| legal_UK = <!-- GSL / P / POM / CD / Class A, B, C -->
  +
| legal_status = [[Controlled Substances Act|Schedule I and III]] ([[United States|US]])
  +
| dependency_liability = 8–10%<ref>"Based upon several nationwide epidemiological studies, marijuana’s dependence liability has been reliably determined to be 8 to 10 percent." {{cite journal |title= The Facts On Marijuana |author=Douglas B. Marlowe, J.D., Ph.D. |publisher=[[NADCP]] |date=December 2010}}</ref>
  +
| routes_of_administration = orally, smoked (or vaporized)
  +
<!--Pharmacokinetic data-->
  +
| bioavailability = 10–35% (inhalation), 6–20% (oral)<ref name="pmid12648025">{{Cite journal |author=Grotenhermen F |title=Pharmacokinetics and pharmacodynamics of cannabinoids |journal=Clin Pharmacokinet |volume=42 |issue=4 |pages=327–60 |year=2003 |pmid=12648025 |doi=10.2165/00003088-200342040-00003}}</ref>
  +
| protein_bound = 95–99%<ref name="pmid12648025"/>
  +
| metabolism = mostly hepatic by CYP2C<ref name="pmid12648025"/>
  +
| elimination_half-life = 1.6–59 h,<ref name="pmid12648025"/> 25–36 h (orally administered dronabinol)
  +
| excretion = 65–80% (feces), 20–35% (urine) as acid metabolites<ref name="pmid12648025"/>
  +
<!--Identifiers-->
  +
| CASNo_Ref = {{cascite|correct|CAS}}
  +
| CAS_number_Ref = {{cascite|correct|??}}
  +
| CAS_number = 1972-08-3
  +
| ATC_prefix = A04
  +
| ATC_suffix = AD10
  +
| PubChem = 16078
  +
| ChEBI_Ref = {{ebicite|changed|EBI}}
  +
| ChEBI = 66964
  +
| IUPHAR_ligand = 2424
  +
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
  +
| DrugBank = DB00470
  +
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
  +
| ChemSpiderID = 15266
  +
| UNII_Ref = {{fdacite|correct|FDA}}
  +
| UNII = 7J8897W37S
  +
| ChEMBL_Ref = {{ebicite|correct|EBI}}
  +
| ChEMBL = 465
  +
<!--Chemical data-->
  +
| C=21 | H=30 | O=2
  +
| molecular_weight = 314.4636
  +
| smiles = CCCCCc1cc(c2c(c1)OC([C@H]3[C@H]2C=C(CC3)C)(C)C)O
  +
| InChI = 1/C21H30O2/c1-5-6-7-8-15-12-18(22)20-16-11-14(2)9-10-17(16)21(3,4)23-19(20)13-15/h11-13,16-17,22H,5-10H2,1-4H3/t16-,17-/m1/s1
  +
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
  +
| StdInChI = 1S/C21H30O2/c1-5-6-7-8-15-12-18(22)20-16-11-14(2)9-10-17(16)21(3,4)23-19(20)13-15/h11-13,16-17,22H,5-10H2,1-4H3/t16-,17-/m1/s1
  +
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
  +
| StdInChIKey = CYQFCXCEBYINGO-IAGOWNOFSA-N
  +
| synonyms = Dronabinol
  +
| boiling_point = 157
  +
| boiling_notes = <ref>{{cite web |url=http://www.cannabis-med.org/data/pdf/2001-03-04-7.pdf |title=Cannabis and Cannabis Extracts: Greater Than the Sum of Their Parts? |publisher= |accessdate=2013-04-26}}</ref>
  +
| solubility = 0.0028<ref name='Garrett1974'/> (23 °C)
  +
| specific_rotation = -152° (ethanol)
  +
}}
   
  +
'''Tetrahydrocannabinol''' ({{IPAc-en|ˌ|t|ɛ|t|r|ə|ˌ|h|aɪ|d|r|ɵ|k|ə|ˈ|n|æ|b|ɨ|n|ɔː|l}} {{Respell|tet-rə|HY|drə-kə|NAB|i-nawl}} or {{IPAc-en|ˌ|t|ɛ|t|r|ə|ˌ|h|aɪ|d|r|ɵ|k|ə|ˈ|n|æ|b|ɨ|n|ɒ|l}} {{Respell|tet-rə|HY|drə-kə|NAB|i-nol}};<ref>[[Dictionary.com|Dictionary Reference]]: [http://dictionary.reference.com/browse/tetrahydrocannabinol tetrahydrocannabinol]: {{IPAc-en|ˌ|t|ɛ|t|r|ə|ˌ|h|aɪ|d|r|ə|k|ə|ˈ|n|æ|b|ə|ˌ|n|ɔː|l}}, {{IPAc-en|-|ˌ|n|ɒ|l}}</ref> '''THC'''), or more precisely its main isomer '''(−)-trans-Δ<sup>9</sup>-tetrahydrocannabinol''' ((6aR,10aR)-delta-9-tetrahydrocannabinol), is the principal [[psychoactive drug|psychoactive]] constituent (or [[cannabinoid]]) of the [[cannabis]] plant. First isolated in 1964, in its pure form, by [[Israel]]i scientists [[Raphael Mechoulam]], [[Yechiel Gaoni]] and colleagues at the Hebrew University of Jerusalem,<ref name="doi10.1021/ja01062a046">{{cite journal |title=Isolation, structure and partial synthesis of an active constituent of hashish |last1=Gaoni |first1=Y. |last2=Mechoulam |first2=R. |journal=Journal of the American Chemical Society |year=1964 |volume=86 |issue=8 |pages=1646–1647 |doi=10.1021/ja01062a046}}</ref><ref>[http://matters.ecnp.nl/number11/interview2.shtml Interview with the winner of the first ECNP Lifetime Achievement Award: Raphael Mechoulam, Israel] February 2007</ref><ref>{{cite journal |last1=Geller |first1=Tom |year=2007 |url=http://chemicalheritage.org/pubs/ch-v25n2-articles/feature_cannabinoids.html |archiveurl=http://web.archive.org/web/20080619013348/http://chemicalheritage.org/pubs/ch-v25n2-articles/feature_cannabinoids.html |archivedate=June 19, 2008 |title=Cannabinoids: A Secret History |journal=Chemical Heritage Newsmagazine |volume=25 |issue=2}}</ref> it is a glassy solid when cold, and becomes [[viscous]] and sticky if warmed. A [[pharmaceutical formulation]] of (−)-trans-Δ<sup>9</sup>-tetrahydrocannabinol, known by its [[International Nonproprietary Name|INN]] '''dronabinol''', is available by prescription in the U.S. and Canada under the brand name [[Marinol]]. An [[aromatic]] [[terpenoid]], THC has a very low solubility in water, but good solubility in most organic [[solvent]]s, specifically [[lipid]]s and [[alcohol]]s.<ref name='Garrett1974'>{{cite journal |title=Physicochemical properties, solubility, and protein binding of Δ<sup>9</sup> -tetrahydrocannabinol |journal=J. Pharm. Sci. |year=1974 |month=July |first=Edward R. |last=Garrett |coauthors=C. Anthony Hunt |volume=63 |issue=7 |pages=1056–64 |doi=10.1002/jps.2600630705 |pmid=4853640}}</ref>
{| border="1" cellpadding="2" cellspacing="0" align="right"
 
  +
| colspan="2" align="center" | '''Tetrahydrocannabinol (THC)'''
 
  +
Like most pharmacologically-active [[secondary metabolite]]s of plants, THC in [[cannabis]] is assumed to be involved in [[self-defense]], perhaps against [[herbivore]]s.<ref name=Pate1994>{{cite journal |last=Pate |first=David W. |year= 1994 |title=Chemical ecology of Cannabis |journal=Journal of the International Hemp Association |volume=1 |issue=29 |pages=32–37 |url=http://www.kew.org/kbd/detailedresult.do?id=91816}}</ref> THC also possesses high [[Ultraviolet|UV-B]] (280–315&nbsp;nm) absorption properties, which, it has been speculated, could protect the plant from harmful UV radiation exposure.<ref name=Pate1983>{{cite journal |doi=10.1007/BF02904200 |title=Possible role of ultraviolet radiation in evolution of Cannabis chemotypes |year=1983 |last=Pate |first=David W. |journal=Economic Botany |volume=37 |issue=4 |pages=396–405}}</ref><ref name=Lydon1987a>{{cite journal |doi=10.1016/S0031-9422(00)82388-2 |title=Photochemical decomposition of cannabidiol in its resin base |year=1987 |last1=Lydon |first1=John |last2=Teramura |first2=Alan H. |journal=Phytochemistry |volume=26 |issue=4 |pages=1216–1217}}</ref><ref name=Lydon1987b>{{cite journal |doi=10.1111/j.1751-1097.1987.tb04757.x |last1=Lydon |first1=John |last2=Teramura |first2=Alan H. |last3=Coffman |first3=C. Benjamin |title=UV-B radiation effects on photosynthesis, growth and cannabinoid production of two Cannabis sativa chemotypes |year=1987 |journal=Photochemistry and Photobiology |volume=46 |issue=2 |pages=201–206 |pmid=3628508}}</ref>
  +
  +
Tetrahydrocannabinol with double bond isomers and their stereoisomers is one of only three cannabinoids scheduled by [[Convention on Psychotropic Substances]] (the other two are [[dimethylheptylpyran]] and [[parahexyl]]). Note that cannabis as a plant is scheduled by [[Single Convention on Narcotic Drugs]] (Schedule I and IV).
  +
  +
==Pharmacology==
  +
The [[pharmacology|pharmacological]] actions of THC result from its partial [[agonist]] activity at the [[cannabinoid receptor]] [[Cannabinoid receptor type 1|CB<sub>1</sub>]] (K<sub>i</sub>=10nM<ref>{{cite web|title=PDSP Database - UNC|url=http://pdsp.med.unc.edu/pdsp.php?|accessdate=11 June 2013}}</ref>), located mainly in the [[central nervous system]], and the [[Cannabinoid receptor type 2|CB<sub>2</sub>]] receptor (K<sub>i</sub>=24nM<ref>{{cite web|title=PDSP Database - UNC|url=http://pdsp.med.unc.edu/pdsp.php?|accessdate=11 June 2013}}</ref>), mainly expressed in cells of the [[immune system]].<ref name="pmid16570099">{{cite pmid|16570099}}</ref> The psychoactive effects of THC are primarily mediated by its activation of CB<sub>1</sub>[[G-protein coupled receptor]]s, which result in a decrease in the concentration of the second messenger molecule [[cyclic adenosine monophosphate|cAMP]] through inhibition of [[adenylate cyclase]].<ref name="pmid11316486">{{cite pmid|11316486}}</ref>
  +
  +
The presence of these specialized cannabinoid receptors in the [[brain]] led researchers to the discovery of [[endocannabinoids]], such as [[anandamide]] and 2-arachidonoyl glyceride ([[2-AG]]). THC targets receptors in a manner far less selective than endocannabinoid molecules released during [[retrograde signaling]], as the drug has a relatively low cannabinoid receptor efficacy and affinity. In populations of low cannabinoid receptor density, THC may act to antagonize endogenous agonists that possess greater receptor efficacy.<ref name="pmid17828291">{{cite pmid|17828291}}</ref> THC is a [[lipophilic]] molecule and may bind non-specifically to a variety of receptors in the brain and body, such as [[adipose tissue]]. For a review of the mechanisms behind endocannabinoid synaptic transmission, see the [[endocannabinoid system]].
  +
  +
Several studies have suggested that THC also has an [[anticholinesterase]] action<ref>{{cite journal |pages=111–6 |doi=10.1007/BF00439369 |title=Possible anticholinesterase-like effects of trans(−)δ8 and -δ9tetrahydrocannabinol as observed in the general motor activity of mice |year=1972 |last=Brown |first=Hugh |journal=Psychopharmacologia |volume=27 |issue=2 |pmid=4638205}}</ref><ref>{{cite journal |pages=773–7 |doi=10.1021/mp060066m |title=A Molecular Link Between the Active Component of Marijuana and Alzheimer's Disease Pathology |year=2006 |last=Eubanks |first=Lisa M., ''et al.'' |journal=Molecular Pharmaceutics |volume=3 |issue=6 |pmid=17140265 |pmc=2562334}}</ref> which may implicate it as a potential treatment for [[Alzheimer's]] and [[Myasthenia Gravis]].
  +
  +
===Effects===
  +
THC has mild to moderate [[analgesic]] effects, and [[cannabis]] can be used to treat pain by altering transmitter release on [[dorsal root ganglion]] of the [[spinal cord]] and in the [[periaqueductal gray]].<ref name="pmid11316486"/> Other effects include relaxation, alteration of visual, auditory, and olfactory senses, fatigue, and appetite stimulation. THC has marked [[antiemetic]] properties, and may also reduce aggression in certain subjects.<ref>{{cite journal|last=Hoaken|title=Drugs of abuse and the elicitation of human aggressive behavior|journal=Addictive Behaviors|year=2003|volume=28|pages=1533–1554}}</ref>
  +
  +
Due to its partial agonistic activity, THC appears to result in greater [[downregulation]] of cannabinoid receptors than endocannabinoids, further limiting its efficacy over other cannabinoids. While tolerance may limit the maximal effects of certain drugs, evidence suggests that tolerance develops irregularly for different effects with greater resistance for primary over side-effects, and may actually serve to enhance the drug's therapeutic window.<ref name="pmid17828291"/> However, this form of tolerance appears to be irregular throughout mouse brain areas and warrants future research.
  +
  +
THC reduces mouse male fertility [[in vivo]], by inhibiting [[Adenosine triphosphate|ATP]] production in [[sperm]].<ref>{{Cite pmid|21615727}}</ref>
  +
  +
THC, as well as other cannabinoids that contain a phenol group, possesses mild [[antioxidant]] activity sufficient to protect neurons against oxidative stress, such as that produced by glutamate-induced [[excitotoxicity]].<ref name="pmid16570099"/>
  +
  +
====Appetite and taste====
  +
It has long been known that, in humans, cannabis increases appetite and consumption of food. The mechanism for appetite stimulation in subjects is believed to result from activity in the gastro-hypothalamic axis. CB1 activity in the hunger centers in the hypothalamus increases the palatability of food when levels of a hunger hormone [[ghrelin]] increase prior to consuming a meal. After [[chyme]] is passed into the [[duodenum]], signaling [[hormone]]s such as [[cholecystokinin]] and [[leptin]] are released, causing reduction in gastric emptying and transmission of satiety signals to the hypothalamus. Cannabinoid activity is reduced through the satiety signals induced by leptin release.
  +
  +
Based on the connection between palatable food and stimulation of [[dopamine]] (DA) transmission in the shell of the [[nucleus accumbens]] (NAc), it has been suggested that cannabis does not only stimulate taste, but possibly the hedonic value of food. A taste-reactivity paradigm in mice was used to investigate the influence of THC on DA release in the NAc upon application of sucrose or [[quinine]] solutions. THC application was found to enhance DA release in the NAc from sucrose, but not quinine, in a dose-dependent manner. This effect was enhanced with sweeter solution, which correlated with an increase the researchers' hedonic-behavior assessment as well. The mechanism behind this effect was elucidated by application of [[rimonabant]], a CB<sub>1</sub> receptor inverse agonist, known to reduce intake of food or sweet solutions. However, the same DA enhancement effect was not found upon repeated application of sucrose, suggesting that the DA response undergoes habituation.<ref>{{cite pmid|22063718}}</ref> The inconsistency between DA habituation and enduring appetite observed after THC application suggests that cannabis-induced appetite stimulation is not only mediated by enhanced pleasure from platable food, but through THC stimulation of another appetitive response as well.
  +
  +
===Antagonism===
  +
The effects of the drug can be suppressed by the CB<sub>1</sub> receptor antagonist [[rimonabant]] (SR141716A) as well as [[opioid receptor]] antagonists (opioid blockers) [[naloxone]] and [[naloxonazine]].<ref name="Lupica 2004">{{cite journal |pages=227–34 |doi=10.1038/sj.bjp.0705931 |title=Marijuana and cannabinoid regulation of brain reward circuits |year=2004 |last1=Lupica |first1=Carl R |last2=Riegel |first2=Arthur C |last3=Hoffman |first3=Alexander F |journal=British Journal of Pharmacology |volume=143 |issue=2 |pmid=15313883 |pmc=1575338}}</ref> The α<sub>7</sub> nicotinic receptor antagonist [[methyllycaconitine]] can block self-administration of THC in rates comparable to the effects of [[varenicline]] on nicotine administration.<ref>{{cite journal |pages=5615–20 |doi=10.1523/JNEUROSCI.0027-07.2007 |laysummary=http://www.newscientist.com/article/dn11904-plant-extract-may-block-cannabis-addiction-.html |laysource=[[New Scientist]] |laydate=22 May 2007 |title=Nicotinic 7 Receptors as a New Target for Treatment of Cannabis Abuse |year=2007 |last=Solinas |first=M., ''et al.'' |journal=Journal of Neuroscience |volume=27 |issue=21 |pmid=17522306}}</ref>
  +
  +
==Isomerism==
  +
  +
[[File:Dibenzopyran and monoterpenoid numbering of tetrahydrocannabinol.png|center|248px|Dibenzopyran and monoterpenoid numbering of tetrahydrocannabinol derivatives]]
  +
  +
{| class="wikitable" style="clear:left"
 
|-
 
|-
  +
! colspan="9" | 7 double bond isomers and their 30 stereoisomers
| colspan="2" align="center" | [[Image:THC-skeletal.png|300px|Chemical structure of tetrahydrocannabinol]]<br /><br />[[Image:Tetrahydrocannabinol-3D-vdW.png|300px|3D structure of tetrahydrocannabinol]]
 
 
|-
 
|-
  +
! colspan="3" | Dibenzopyran numbering !! colspan="2" | Monoterpenoid numbering !! rowspan="2" | Number of stereoisomers !! rowspan="2" | Natural occurrence !! rowspan="2" | [[Convention on Psychotropic Substances]] Schedule !! rowspan="2" | Structure
| [[IUPAC nomenclature|Chemical name]]
 
| align="center" | (−)-(6a''R'',10a''R'')-6,6,9-trimethyl-<br />3-pentyl-6a,7,8,10a-tetrahydro-<br />6''H''-benzo[''c'']chromen-1-ol
 
 
|-
 
|-
  +
! Short name !! Chiral centers !! Full name !! Short name !! Chiral centers
| [[Chemical formula]]
 
| C<sub>21</sub>H<sub>30</sub>O<sub>2</sub>
 
 
|-
 
|-
  +
| Δ<sup>6a,7</sup>-tetrahydrocannabinol || 9 and 10a || 8,9,10,10a-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol || Δ<sup>4</sup>-tetrahydrocannabinol || 1 and 3 || 4 || No || Schedule I || [[File:Delta6a,7-Tetrahydrocannabinol.png|150px]]
| [[Molecular mass]]
 
| 314.46 g/mol
 
 
|-
 
|-
  +
| Δ<sup>7</sup>-tetrahydrocannabinol || 6a, 9 and 10a || 6a,9,10,10a-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol || Δ<sup>5</sup>-tetrahydrocannabinol || 1, 3 and 4 || 8 || No || Schedule I || [[File:Delta7-Tetrahydrocannabinol.png|150px]]
| [[Glass transition]]
 
| 9.3 °C
 
 
|-
 
|-
  +
| Δ<sup>8</sup>-tetrahydrocannabinol || 6a and 10a || 6a,7,10,10a-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol || Δ<sup>6</sup>-tetrahydrocannabinol || 3 and 4 || 4 || Yes || Schedule I || [[File:Delta8-Tetrahydrocannabinol.png|150px]]
| [[Boiling point]]
 
| 155-157 °C (vacuum, 0.07 mbar)
 
 
|-
 
|-
  +
| Δ<sup>9,11</sup>-tetrahydrocannabinol || 6a and 10a || 6a,7,8,9,10,10a-hexahydro-6,6-dimethyl-9-methylene-3-pentyl-6H-dibenzo[b,d]pyran-1-ol || Δ<sup>1,7</sup>-tetrahydrocannabinol || 3 and 4 || 4 || No || Schedule I || [[File:Delta9,11-Tetrahydrocannabinol.png|150px]]
| [[Solubility]] (water)
 
| 2.8 mg/L (23 °C)
 
 
|-
 
|-
  +
| '''Δ<sup>9</sup>-tetrahydrocannabinol''' || '''6a and 10a''' || '''6a,7,8,10a-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol''' || '''Δ<sup>1</sup>-tetrahydrocannabinol''' || '''3 and 4''' || '''4''' || '''Yes''' || '''Schedule II''' || [[File:Delta9-Tetrahydrocannabinol.png|150px]]
| [[Solubility]] (saline)
 
| 0.77 mg/L (NaCl, 0.15 M)
 
 
|-
 
|-
  +
| Δ<sup>10</sup>-tetrahydrocannabinol || 6a and 9 || 6a,7,8,9-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol || Δ<sup>2</sup>-tetrahydrocannabinol || 1 and 4 || 4 || No || Schedule I || [[File:Delta10-Tetrahydrocannabinol.png|150px]]
| [[pKa]]
 
| 10.6
 
 
|-
 
|-
  +
| Δ<sup>6a,10a</sup>-tetrahydrocannabinol || 9 || 7,8,9,10-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol || Δ<sup>3</sup>-tetrahydrocannabinol || 1 || 2 || No || Schedule I || [[File:Delta6a,10a-Tetrahydrocannabinol.png|150px]]
| [[partition coefficient|log ''P'']]
 
  +
|}
| 3.78 (water @ pH 7 / octanol)
 
  +
  +
{| class="wikitable" style="clear:left"
 
|-
 
|-
  +
! colspan="5" | 4 stereoisomers of Δ<sup>9</sup>-tetrahydrocannabinol
| [[CAS registry number|CAS number]]
 
| 1972-08-3
 
 
|-
 
|-
  +
! colspan="2" | Names !! Description !! Natural occurrence !! Structure
  +
|-
  +
| '''(−)-trans-Δ<sup>9</sup>-tetrahydrocannabinol''' || '''(6aR,10aR)-Δ<sup>9</sup>-tetrahydrocannabinol''' || '''levorotary trans''' || '''Yes''' || [[File:(−)-(6aR,10aR)-Δ9-Tetrahydrocannabinol (with hydrogen atoms shown).svg|150px]]
  +
|-
  +
| (−)-cis-Δ<sup>9</sup>-tetrahydrocannabinol || (6aS,10aR)-Δ<sup>9</sup>-tetrahydrocannabinol || levorotary cis || Yes || [[File:(−)-(6aS,10aR)-Δ9-Tetrahydrocannabinol (with hydrogen atoms shown).svg|150px]]
  +
|-
  +
| (+)-trans-Δ<sup>9</sup>-tetrahydrocannabinol || (6aS,10aS)-Δ<sup>9</sup>-tetrahydrocannabinol || dextrorotary trans || No || [[File:(+)-(6aS,10aS)-Δ9-Tetrahydrocannabinol (with hydrogen atoms shown).svg|150px]]
  +
|-
  +
| (+)-cis-Δ<sup>9</sup>-tetrahydrocannabinol || (6aR,10aS)-Δ<sup>9</sup>-tetrahydrocannabinol || dextrorotary cis || No || [[File:(+)-(6aR,10aS)-Δ9-Tetrahydrocannabinol (with hydrogen atoms shown).svg|150px]]
 
|}
 
|}
   
  +
Note that 6H-dibenzo[b,d]pyran-1-ol is the same as 6H-benzo[c]chromen-1-ol.
'''Tetrahydrocannabinol''', also known as '''THC''', '''Δ<sup>9</sup>-THC''', '''Δ<sup>9</sup>-tetrahydrocannabinol'''
 
(delta-9-tetrahydrocannabinol), '''Δ¹-tetrahydrocannabinol''' (using an older numbering scheme), or '''dronabinol''', is the main [[psychoactive substance]] found in a variety of plants; most abundantly so in the [[Cannabis]] plant. It was isolated by [[Raphael Mechoulam]] and [[Yechiel Gaoni]] from the [[Weizmann Institute]] in [[Rehovot]], [[Israel]] in [[1964]]. In pure form it is a glassy solid when cold and becomes [[viscous]] and sticky if warmed. THC has a very low [[solubility]] in water, but a good solubility in most organic [[solvent]]s such as [[ethanol]] or [[hexane]]. As in the case of [[nicotine]] and [[caffeine]], THC's most likely
 
function in Cannabis is to protect the plant from [[herbivore]]s or [[pathogen]]s <ref>http://www.madsci.org/posts/archives/jun2000/961475085.Bt.r.html</ref>. THC also possesses high UV-B (280-315 nm) absorption properties, protecting the plant from harmful radiation.
 
   
  +
See also: [[Cannabidiol#Isomerism]], [http://www.leffingwell.com/download/chirality-phamacology.pdf John C. Leffingwell ''Chirality & Bioactivity I.: Pharmacology'', 2003].
== Pharmacology ==
 
[[Image:Thc.pdb.gif|thumb|right|Rotating image of the molecule]]
 
Its [[pharmacology|pharmacological]] actions are the result of its binding to the [[cannabinoid receptor]] CB<sub>1</sub>, located in the [[brain]]. The presence of these specialized receptors in the brain implied to researchers that [[endogenous]] [[cannabinoids]] were manufactured by the body, so the search began for a substance normally manufactured in the brain that binds to these receptors, the so-called natural [[ligand]] or [[agonist]], leading to the eventual discovery of [[anandamide]], 2 arachidonyl glyceride (2-AG) and other related compounds. This story resembles the discovery of the endogenous [[opiates]] ([[endorphins]], [[enkephalins]], and [[dynorphin]]), after the realization that [[morphine]] and other opiates bound to specific receptors in the brain.
 
   
  +
==Toxicity==
The mechanism of endocannabinoid synaptic transmission is understood by the following events: an excitatory transmission of the neurotransmitter glutamate causes an influx of calcium ions into the [[post-synaptic]] neuron. Through a mechanism not yet fully understood, the presence of calcium post-synaptically induces the production of endocannabinoids in the post synaptic neuron. These endocannabinoids (such as anandamide) are released into the synaptic cleft. Once in the synaptic cleft, binding occurs at cannabinoid receptors present in pre-synaptic neurons where they can then modulate neurotransmission presynaptically. This form of neurotransmission is termed retrograde transmission as the signal is carried in the opposite direction of orthodox propagation; it provides an interesting insight into neurotransmission, which previously was thought to be exclusively one way.
 
  +
[[Image:Thc.pdb.gif|thumb|3D rendering of the THC molecule]]
  +
[[Image:White widow.jpg|thumb|A hybrid ''Cannabis'' strain ([[White widow (cannabis)|White Widow]]) flower coated with [[trichomes]], which contain more THC than any other part of the plant]]
  +
[[Image:Trichomes on a Cannabis Sativa Flower.jpg|thumb|Closeup of THC-filled trichomes on a ''Cannabis sativa'' leaf]]
  +
There has never been a documented human fatality solely from overdosing on tetrahydrocannabinol or cannabis in its natural form,<ref name="Walker and Huang">{{cite journal |pages=127–35 |doi=10.1016/S0163-7258(02)00252-8 |quote=...to date, there are no deaths known to have resulted from overdose of cannabis. (p. 128) |title=Cannabinoid analgesia |year=2002 |last1=Walker |first1=J.Michael |last2=Huang |first2=Susan M |journal=Pharmacology & Therapeutics |volume=95 |issue=2}}</ref> though the synthetic THC pill "Marinol" was cited by the FDA as being responsible for 4 deaths between January 1, 1997 and June 30, 2005.<ref>{{cite web |url=http://www.oregon.gov/Pharmacy/Imports/Marijuana/Public/DeathsFromMarijuanaV17FDAdrugs.pdf |title=Deaths from Marijuana v. 17 FDA-Approved Drugs |date=2005-06-30 |format=PDF |accessdate=2011-02-03 }}</ref> Information about THC's [[toxicity]] is primarily based on results from animal studies. The toxicity depends on the route of administration and the laboratory animal. Absorption is limited by [[Blood lipids|serum lipids]], which can become saturated with THC, mitigating toxicity.<ref name="ErowidMSDS">{{cite web|url=http://www.erowid.org/plants/cannabis/thc_data_sheet.shtml |title=Erowid Cannabis Vault : THC Material Safety Data Sheet |publisher=Erowid.org |date= |accessdate=2011-04-20}}</ref>
   
  +
==Research==
THC has [[analgesic]] effects that, even at low doses, causes a "high", and [[medical cannabis]] can be used to treat pain. The mechanism for analgesic effects caused directly by THC or other cannabinoid agonists is not fully elucidated. Other effects include: relaxation; euphoria; altered space-time perception; alteration of visual, auditory, and olfactory senses; disorientation; fatigue; and appetite stimulation related to CB1 receptor activity in the CNS. The mechanism for appetite stimulation in subjects is somewhat understood and explained through a gastro-hypothalamic axis. CB1 activity in the hunger centres in the hypothalamus that increase the palatablity of food, a hunger hormone--ghrelin increases hunger signals as food enters the stomach. After chyme is passed into the duodenum, signaling hormones such as CCK and leptin are released causing reduction in gastric emptying and satiety signals to the hypothalamus, respectively. Cannabinoid activity is reduced through the satiety signals induced by leptin release. It also has [[anti-emetic]] properties, and also may reduce aggression in certain subjects.
 
  +
The discovery of THC was first described in "Isolation, structure and partial synthesis of an active constituent of hashish", published in the [[Journal of the American Chemical Society]] in 1964.<ref name="doi10.1021/ja01062a046"/> Research was also published in the [[academic journal]] ''[[Science (journal)|Science]]'', with "Marijuana chemistry" by [[Raphael Mechoulam]] in June 1970,<ref>{{cite journal |doi=10.1126/science.168.3936.1159 |title=Marihuana Chemistry |year=1970 |last1=Mechoulam |first1=R. |journal=Science |volume=168 |issue=3936 |pages=1159–1165|bibcode = 1970Sci...168.1159M }}</ref> followed by "Chemical basis of hashish activity" in August 1970.<ref>{{cite journal |doi=10.1126/science.169.3945.611 |title=Chemical Basis of Hashish Activity |year=1970 |last1=Mechoulam |first1=R. |last2=Shani |first2=A. |last3=Edery |first3=H. |last4=Grunfeld |first4=Y. |journal=Science |volume=169 |issue=3945 |pages=611–612|bibcode = 1970Sci...169..611M }}</ref> In the latter, the team of researchers from [[Hebrew University of Jerusalem|Hebrew University]] Pharmacy School and [[Tel Aviv University]] Medical School experimented on monkeys to isolate the active compounds in [[hashish]]. Their results provided evidence that, except for tetrahydrocannabinol, no other major active compounds were present in hashish.
   
  +
===Studies in humans===
THC has an active [[metabolite]], [[11-Hydroxy-THC]] which may also play a role in the analgesic and recreational effects of the drug.
 
  +
Evidence suggests that THC helps alleviate symptoms suffered both by [[AIDS]] patients, and by cancer patients undergoing [[chemotherapy]], by increasing appetite and decreasing nausea.<ref>[http://www.cancer.gov/cancertopics/pdq/cam/cannabis/patient/page2 Cannabis and Cannabinoids] – National Cancer Institute</ref><ref name=Haney>{{Cite journal |author=Haney M |title=Dronabinol and marijuana in HIV-positive marijuana smokers. Caloric intake, mood, and sleep |journal=Journal of Acquired Immune Deficiency Syndromes |volume=45 |issue=5 |pages=545–54 |year=2007 |pmid=17589370 |doi=10.1097/QAI.0b013e31811ed205 |author2=Gunderson EW |author3=Rabkin J |last4=Hart |first4=Carl L |last5=Vosburg |first5=Suzanne K |last6=Comer |first6=Sandra D |last7=Foltin |first7=Richard W}}</ref><ref>{{Cite journal |author=Abrams DI |coauthors=Hilton JF, Leiser RJ, Shade SB, Elbeik TA, Aweeka FT, Benowitz NL, Bredt BM, Kosel B, Aberg JA, Deeks SG, Mitchell TF, Mulligan K, Bacchetti P, McCune JM, Schambelan M. |title=Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial |journal=Annals of Internal Medicine |volume=139 |issue=4 |pages=258–66 |year=2003 |pmid=12965981}}</ref><ref name="groten">{{Cite book |last=Grotenhermen |first=Franjo |chapter=Review of Therapeutic Effects |chapterurl=http://books.google.com/books?id=JvIyVk2IL_sC&pg=PA123 |title=Cannabis and Cannabinoids: Pharmacology, Toxicology and Therapeutic Potential |publisher=[[Haworth Press]] |location=New York City |year=2002 |isbn=978-0-7890-1508-2 |page=124}}</ref> It has also been shown to assist some [[glaucoma]] patients by reducing pressure within the eye, and is used in the form of cannabis by a number of [[multiple sclerosis]] patients, who use it to alleviate [[neuropathic pain]] and [[spasticity]]. The [[National Multiple Sclerosis Society]] is currently supporting further research into these uses.<ref name="MS society">{{cite web |url=http://www.nationalmssociety.org/about-multiple-sclerosis/what-we-know-about-ms/treatments/complementary--alternative-medicine/marijuana/index.aspx |title=Marijuana (Cannabis) |publisher=National Multiple Sclerosis Society |accessdate=2009-09-05}}</ref> Studies in humans have been limited by federal and state laws criminalizing marijuana.
   
  +
In August 2009 a [[Clinical study#Phase IV|phase IV clinical trial]] by the [[Hadassah Medical Center]] in Jerusalem, Israel started to investigate the effects of THC on [[post-traumatic stress disorder]]s.<ref name="urlAdd on Study on Δ9-THC Treatment for Posttraumatic Stress Disorders (PTSD) - Full Text View - ClinicalTrials.gov">{{ClinicalTrialsGov|NCT00965809|Add on Study on Δ9-THC Treatment for Posttraumatic Stress Disorders (PTSD) (THC_PTSD)}}</ref>
===Toxicity===
 
   
  +
Dronabinol's usefulness as a treatment for Tourette syndrome cannot be determined until/unless longer controlled studies on larger samples are undertaken.<ref>{{cite journal |pages=57–61 |doi=10.1055/s-2002-25028 |title=Treatment of Tourette's Syndrome with Δ9-Tetrahydrocannabinol (THC): A Randomized Crossover Trial |year=2002 |last=Müller-Vahl |first=K. R., ''et al.'' |journal=Pharmacopsychiatry |volume=35 |issue=2 |pmid=11951146}}</ref><ref>{{cite journal |pages=459–65 |doi=10.4088/JCP.v64n0417 |title=Delta 9-Tetrahydrocannabinol (THC) is Effective in the Treatment of Tics in Tourette Syndrome |year=2003 |last=Muller-Vahl |first=Kirsten R., ''et al.'' |journal=The Journal of Clinical Psychiatry |volume=64 |issue=4 |pmid=12716250}}</ref><ref>{{cite journal |pages=384–8 |doi=10.1038/sj.npp.1300047 |title=Treatment of Tourette Syndrome with Delta-9-Tetrahydrocannabinol (Δ9-THC): No Influence on Neuropsychological Performance |year=2003 |last=Müller-Vahl |first=Kirsten R., ''et al.'' |journal=Neuropsychopharmacology |volume=28 |issue=2 |pmid=12589392}}</ref>
According to the [[Merck Index]], 12th edition, THC has a [[LD50|LD<sub>50</sub>]] value of 1270&nbsp;[[Milligram|mg]]/[[Kilogram|kg]] (male rats) and 730&nbsp;mg/kg (female rats) administered orally dissolved in [[sesame oil]].<ref name="Erowid">{{cite web|url=http://www.erowid.org/plants/cannabis/cannabis_chemistry.shtml|title=
 
Cannabis Chemistry|accessdate=2006-03-20|author=Erowid}}</ref>
 
   
  +
Research on THC has shown that the [[cannabinoid receptor]]s are responsible for mediated inhibition of dopamine release in the retina.<ref>{{cite journal |pmid=8971741 |year=1996 |last1=Schlicker |first1=E |last2=Timm |first2=J |last3=Göthert |first3=M |title=Cannabinoid receptor-mediated inhibition of dopamine release in the retina |volume=354 |issue=6 |pages=791–5 |journal=Naunyn-Schmiedeberg's archives of pharmacology |doi=10.1007/BF00166907}}</ref>
If this were scaled up to an adult human, the LD<sub>50</sub> would be between approximately 50 and 86 g for a 68 kg (150 lb) female or male person respectively. This would be equivalent to 1-1.8 [[kg]] of [[Cannabis (drug)|cannabis]] with a 5% THC content (roughly average) taken orally. The LD<sub>50</sub> value for rats by inhalation of THC is 42 mg/kg of body weight. It is important to note, however, that toxicity studies in animal models do not necessarily correlate to human toxicity. THC receptor distribution in the rat [[Central nervous system|CNS]] is different from that of humans, meaning that there is the significant possibility that toxicity in humans varies from the published animal LD<sub>50</sub> studies. There has never been a documented fatality from marijuana or THC overdose. Absorption is limited by serum lipids which can become saturated with THC, thus the inherent solubility may mitigate toxicity.
 
   
  +
In a 1981 double-blind, placebo-controlled study, oral THC was given to Multiple Sclerosis patients. A decrease in spasticity was shown when compared with placebo.<ref name="Petro 1981">{{cite journal |last= Petro |first= DJ |coauthors= Ellenberg C. |title= Treatment of human spasticity with delta-9 tetrahydrocannabinol. |journal= Journal of Clinical Pharmacology |year= 1981 |volume= 36 |pages= 189–261 }}</ref> In a 1983 single-blind, placebo-controlled study, decreased tremor occurred in 1/4 of Multiple Sclerosis patients.<ref name="Clifford 1983">{{cite journal |last= Clifford |first= DB |title= Tetrahydrocannabinol for tremor in multiple sclerosis. |journal= Annals of Neurology |year= 1983 |volume= 13(6) |pages= 669–671 }}</ref>
Studies of the distribution of the cannabinoid receptors in the brain explain why THC's toxicity is so low (i.e., the [[LD50|LD<sub>50</sub>]] of the compound is so large): parts of the brain that control vital functions such as [[Respiration (physiology)|respiration]] do not have many receptors, so they are relatively unaffected even by doses larger than could ever be ingested under any normal conditions.
 
{{see also|Health issues and the effects of cannabis}}
 
   
  +
Several studies have been conducted with spinal injury patients and THC. Decreased tremor occurred in 2/5 patients in a 1986 double-blind, placebo-controlled crossover study.<ref name="Hanigan 1986">{{cite journal |last= Hannigan |first= WC |coauthors= Destree R, Truong XT. |title= The effect of delta-9-THC on human spasticity |journal= Clinical Pharmacology and Therapeutics |year= 1986 |volume= 39 |pages= 198 }}</ref> THC was shown to decrease spasticity and pain in a 1990 double-blind, placebo-controlled study.<ref name="Maurer 1990">{{cite journal |last= HMaurer |first= M |coauthors= Henn V, Dittrich A, Hofmann A. |title= Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial. |journal= European Archives of Psychiatry and Clinical Neuroscience. |year= 1990 |volume= 240 |pages= 1–4 }}</ref>
==Research==
 
A number of studies indicate that THC may provide medical benefits for [[cancer]] and [[AIDS]] patients by increasing appetite and decreasing nausea. It has been shown to assist some [[glaucoma]] patients by reducing pressure within the eye, and is used in the form of cannabis by a number of [[multiple sclerosis]] patients to relieve the spasms associated with their condition.
 
   
  +
===Studies in animals and in vitro===
Studies also indicate a variety of negative effects associated with constant, long-term use, including short-term memory loss. However, other studies have refuted this, claiming the MRIs of long term users show little or no difference to MRIs of the non-using control group. Although using positron emission tomography ([[PET]]), at least one study indicates altered memory-related brain function in marijuana users <ref name="elsevier">Pharmacology, Biochemistry and Behavior 72 (2002) 237–250. www.elsevier.com/locate/pharmbiochembeh</ref>. The long-term effects of THC on humans have been disputed because its status as an illegal drug makes research difficult.
 
  +
There is evidence to suggest THC can prevent [[Alzheimer's Disease]] in an [[animal model]] by preventing the inflammation caused by [[microglia]] cells which are activated by binding of [[amyloid]] protein.<ref name="pmid15728830">{{cite journal |pages=1904–13 |doi=10.1523/JNEUROSCI.4540-04.2005 |title=Prevention of Alzheimer's Disease Pathology by Cannabinoids: Neuroprotection Mediated by Blockade of Microglial Activation |year=2005 |last=Ramirez |first=B. G., ''et al.'' |journal=Journal of Neuroscience |volume=25 |issue=8 |pmid=15728830 }}</ref>
   
  +
In 2006, researchers from [[Scripps Research Institute]], using both [[computer modeling]] and [[biochemical assays]], found THC "may provide an improved therapeutic for [[Alzheimer's disease]]" that would treat "both the symptoms and progression" of the disease. THC, they found, inhibits the formation of [[Amyloid_plaque#Amyloid_pathology|amyloid plaque]] (the primary marker for Alzheimer's disease). The authors concluded that their research offered "convincing evidence that THC possesses remarkable inhibitory qualities."<ref>{{cite journal |pages=773–7 |doi=10.1021/mp060066m |pmc=2562334 |title=A Molecular Link Between the Active Component of Marijuana and Alzheimer's Disease Pathology |year=2006 |last=Eubanks |first=Lisa M., ''et al.'' |journal=Molecular Pharmaceutics |volume=3 |issue=6 |pmid=17140265 |first3=4th}}</ref> THC was found to be "considerably more effective" than two of the leading Alzheimer's drugs on the market, [[donepezil]] and [[tacrine]].<ref>[http://www.scripps.edu/news/press/2006/080906.html News Release<!-- Bot generated title -->]</ref>
Preliminary research on synthetic THC has been conducted on patients with [[Tourette syndrome]], with results suggesting that it may help in reducing nervous tics and urges by a significant degree. Animal studies suggested that [[Marinol]] and nicotine could be used as an effective adjunct to [[neuroleptic]] drugs in treating TS. Research on twelve patients showed that Marinol reduced tics with no significant adverse effects. A six-week controlled study on 24 patients showed the patients taking Marinol had a significant reduction in tic severity without serious adverse effects. Seven patients dropped out or had to be excluded from the study, one due to adverse side-effects. More significant reduction in tic severity was reported with longer treatment. No detrimental effects on cognitive functioning and a trend towards improvement in cognitive functioning were reported during and after treatment. Marinol's usefulness as a treatment for TS cannot be determined until/unless longer controlled studies on larger samples are undertaken.<ref>PMID 11951146</ref><ref>PMID 11951146</ref><ref>PMID 12716250</ref><ref>PMID 12589392</ref>
 
   
  +
THC may also be an effective cancer treatment, with studies showing tumor size reduction in mice conducted in 1975<ref>{{cite journal |pmid=1159836 |year=1975 |last=Munson |first=AE, ''et al.'' |title=Antineoplastic activity of cannabinoids |volume=55 |issue=3 |pages=597–602 |journal=Journal of the National Cancer Institute}}</ref> and 2007,<ref>{{cite journal |pages=339–46 |doi=10.1038/sj.onc.1210641 |title=Δ9-Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo |year=2007 |last1=Preet |first1=A |last2=Ganju |first2=R K |last3=Groopman |first3=J E |journal=Oncogene |volume=27 |issue=3 |pmid=17621270}}</ref> as well as in a pilot study in humans with [[glioblastoma multiforme]] (a type of brain cancer).<ref>{{cite journal |pages=197–203 |doi=10.1038/sj.bjc.6603236 |title=A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme |year=2006 |last=Guzmán |first=M, ''et al.'' |journal=British Journal of Cancer |volume=95 |issue=2 |pmid=16804518 |pmc=2360617}}</ref> THC has also been found to attenuate conditioned retching and sickness, experimentally verifying anecdotal reports that THC alleviates nausea and vomiting when undergoing chemotherapy.<ref name=Kemp>Kemp, Stephen W.P. (2001). ''[http://scholars.wlu.ca/etd/707/ The effect of detla-9-tetrahydrocannabinol (THC) on lithium-induced sickness reactions in both rats (Rattus norvegicus) and the house musk shrew (Suncus murinus)]'' (M.A. thesis) Wilfrid Laurier University</ref>
Recent research has shown that many adverse side effects, generally known as the "stoner" stereotype, fail to hold up to the scientific method. Recent studies with synthetic cannabinoids show that activation of CB1 receptors can facilitate neurogeneration, as well as neuroprotection, and can even help prevent natural neural degradation from neurodegenerative diseases such as MS, Parkinson's, and Alzheimer's. This, along with research into the CB2 receptor (throughout the immune system), has given the case for medical marijuana more support.
 
   
  +
A two-year study in which rats and mice were force-fed tetrahydrocannabinol dissolved in corn oil showed reduced body mass, enhanced survival rates, and decreased tumor incidences in several sites, mainly organs under hormonal control. It also caused [[testicular atrophy]] and uterine and ovarian [[hypoplasia]], as well as hyperactivity and convulsions immediately after administration, of which the onset and frequency were dose related.<ref>{{cite journal |pages=109–17 |doi=10.1006/faat.1996.0048 |title=Toxicity and Carcinogenicity of Δ9-Tetrahydrocannabinol in Fischer Rats and B6C3F1 Mice |year=1996 |last=Chan |first=P, ''et al.'' |journal=Fundamental and Applied Toxicology |volume=30 |pmid=8812248 |issue=1}}</ref>
In ''[[in-vitro]]'' experiments THC at extremely high concentrations, which could not be reached with commonly consumed doses, caused inhibition of plaque formation, the cause of [[Alzheimer's disease]], better than currently approved drugs.<ref>PMID 17140265</ref>
 
   
  +
Research in rats indicates that THC prevents [[hydroperoxide]]-induced [[oxidative damage]] as well as or better than other [[antioxidant]]s in a chemical ([[Fenton reaction]]) system and [[neuron]]al cultures.<ref name="pmid9653176">{{cite journal |pages=8268–73 |doi=10.1073/pnas.95.14.8268 |title=Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants |year=1998 |last1=Hampson |first1=A. J. |journal=Proceedings of the National Academy of Sciences |volume=95 |issue=14 |pmid=9653176 |pmc=20965 |bibcode=1998PNAS...95.8268H |last2=Grimaldi |first2=M |last3=Axelrod |first3=J |last4=Wink |first4=D}}</ref> In [[mice]] low doses of Δ<sup>9</sup>-THC reduces the progression of [[atherosclerosis]].<ref name="pmid15815632">{{cite journal |pages=782–6 |doi=10.1038/nature03389 |title=Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice |year=2005 |last=Steffens |first=Sabine, ''et al.'' |journal=Nature |volume=434 |issue=7034 |pmid=15815632|bibcode = 2005Natur.434..782S }}</ref>
THC may also be an effective anti-cancer treatment, with studies showing tumor reduction in mice, conducted in 1975.<ref name="">[http://www.drugpolicycentral.com/bot/pg/cancer/THC_cancer_sep_1975.htm]</ref>
 
   
  +
Research has also shown that past claims of brain damage from cannabis use fail to hold up to the scientific method.<ref>{{cite journal |doi=10.1017/S1355617703950016 |laysummary=http://www.webmd.com/mental-health/news/20030701/heavy-marijuana-use-doesnt-damage-brain |laysource=[[WebMD]] |laydate=July 1, 2003 |title=Non-acute (residual) neurocognitive effects of cannabis use: A meta-analytic study |year=2003 |last=Grant |first=Igor ''et al.'' |journal=Journal of the International Neuropsychological Society |volume=9 |issue=5}}</ref> Instead, recent studies with synthetic cannabinoids show that activation of CB1 receptors can facilitate [[neurogenesis]],<ref name=Jiang2005>{{cite journal |doi=10.1172/JCI25509 |title=Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects |year=2005 |last=Jiang |first=W., ''et al.'' |journal=Journal of Clinical Investigation |volume=115 |issue=11 |pages=3104–3116 |pmid=16224541 |pmc=1253627}}</ref> as well as neuroprotection,<ref name=Sarne2005>{{cite journal |doi=10.2174/156800705774933005 |title=Cannabinoids: Between Neuroprotection and Neurotoxicity |year=2005 |last1=Sarne |first1=Yosef |last2=Mechoulam |first2=Raphael |journal=Current Drug Targets - CNS & Neurological Disorders |volume=4 |issue=6 |pages=677–684}}</ref> and can even help prevent natural neural degradation from neurodegenerative diseases such as MS, Parkinson's, and Alzheimer's. This, along with research into the CB2 receptor (throughout the immune system), has given the case for medical marijuana more support.<ref name=Correa2005>{{cite journal |doi=10.2174/1389557054368790 |title=The Role of Cannabinoid System on Immune Modulation: Therapeutic Implications on CNS Inflammation |year=2005 |last=Correa |first=Fernando, ''et al.'' |journal=Mini Reviews in Medicinal Chemistry |volume=5 |issue=7 |pages=671–675 |pmid=16026313}}</ref><ref name=Fernández-ruiz2007>{{cite journal |doi=10.1016/j.tips.2006.11.001 |title=Cannabinoid CB2 receptor: a new target for controlling neural cell survival? |year=2007 |last=Fernández-Ruiz |first=Javier, ''et al.'' |journal=Trends in Pharmacological Sciences |volume=28 |pages=39–45 |pmid=17141334 |issue=1}}</ref> THC is both a CB1 and CB2 agonist.<ref>{{cite web |first=Roger G |last=Pertwee |url=http://www.tocris.com/pdfs/pdf_downloads/Cannabinoid_Receptor_Ligands_Review.pdf |title=Cannabinoid Receptor Ligands |publisher=Tocris |year=2010 |accessdate=2011-04-20}}</ref>
In early May 2007, British Doctors released a study that linked THC to [[psychotic]] episodes in test subjects, including [[paranoid]] [[delusion]]s and [[hallucination]]s. The effect on [[schizophrenic]]s was the most pronounced, leading to premature cancellation of that part of the study. <ref>[http://www.cbc.ca/health/story/2007/05/01/marijuana-psychotic.html]</ref>
 
   
  +
===Scientific studies indicating side-effects===
==Synthetic THC==
 
  +
Conceivable long-term ill effects of THC on humans are disputed but not improbable, yet its status as an illegal drug in most countries can make research difficult, for instance in the United States where the [[National Institute on Drug Abuse]] was the only legal source of cannabis for researchers until it recently became legalized in Colorado and Washington.<ref name="MAPS">[http://www.maps.org/research/mmj/ Medical Marijuana<!-- Bot generated title -->]</ref>
Synthetic THC, also known under the substance name ''dronabinol'', is available as a prescription drug (under the trade name [[Marinol]]) in several countries including the [[United States|U.S.]], [[The Netherlands]], and [[Germany]]. In the United States, Marinol is a [[Controlled Substances Act#Schedule III drugs|Schedule III]] drug, available by prescription, considered to be non-narcotic and to have a low risk of physical or mental dependence. Efforts to get cannabis rescheduled as analogous to Marinol have not succeeded thus far. As a result of the rescheduling of Marinol from Schedule II to Schedule III, refills are now permitted for this substance. Marinol has been approved by the FDA in the treatment of [[anorexia (symptom)|anorexia]] in [[AIDS]] patients, as well as for refractory [[nausea]] and [[vomiting]] of patients undergoing [[chemotherapy]].
 
   
  +
Some studies claim a variety of negative effects associated with long-term use, including short-term memory loss.<ref name="pmid19825904">{{cite journal |pages=241–6 |doi=10.1177/0269881109106909 |title=Does cannabis use affect prospective memory in young adults? |year=2009 |last1=Bartholomew |first1=J. |last2=Holroyd |first2=S. |last3=Heffernan |first3=T. M |journal=Journal of Psychopharmacology |volume=24 |issue=2 |pmid=19825904}}</ref><ref name="pmid18635709">{{cite journal |pages=495–509 |doi=10.1177/0269881108091076 |title=Reduced memory and attention performance in a population-based sample of young adults with a moderate lifetime use of cannabis, ecstasy and alcohol |year=2008 |last=Indlekofer |first=F, ''et al.'' |journal=Journal of Psychopharmacology |volume=23 |issue=5 |pmid=18635709}}</ref> Using [[positron emission tomography]] (PET), one study reports altered memory-related brain function (23% better memory for the cannabis users in recalling the end of a list of things to remember, but 19% worse memory for cannabis users in recalling the middle of a list of things to remember) in chronic daily cannabis users.<ref name="Block2002">{{cite journal |pages=237–50 |doi=10.1016/S0091-3057(01)00771-7 |title=Effects of frequent marijuana use on memory-related regional cerebral blood flow |year=2002 |last=Block |first=R, ''et al.'' |journal=Pharmacology Biochemistry and Behavior |volume=72 }}</ref>
An analog of dronabinol, [[nabilone]], is available commercially in Canada under the trade name Cesamet, manufactured by Valeant. Cesamet has also received [[FDA]] approval for future availability in the United States and is a [[Controlled Substances Act#Schedule II drugs|Schedule II]] drug.
 
   
  +
Some studies have suggested that cannabis users have a greater risk of developing [[psychosis]] than non-users. This risk is most pronounced in cases with an existing risk of psychotic disorder.<ref>{{cite journal |pages=319–28 |doi=10.1016/S0140-6736(07)61162-3 |title=Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review |year=2007 |last=Moore |first=Theresa HM, ''et al.'' |journal=The Lancet |volume=370 |issue=9584 |pmid=17662880}}</ref> Other studies have made similar associations, especially in individuals predisposed to psychosis prior to cannabis use.<ref>{{cite journal |doi=10.1136/bmj.38267.664086.63 |title=Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people |year=2005 |last=Henquet |first=C., ''et al.'' |journal=BMJ |volume=330 |issue=7481 |pages=11–0 |pmid=15574485 |pmc=539839 }}</ref> A 2005 paper from the [[Dunedin Multidisciplinary Health and Development Study|Dunedin study]] suggested an increased risk in the development of psychosis linked to polymorphisms in the COMT gene.<ref>{{cite journal |pages=1117–27 |doi=10.1016/j.biopsych.2005.01.026 |title=Moderation of the Effect of Adolescent-Onset Cannabis Use on Adult Psychosis by a Functional Polymorphism in the Catechol-O-Methyltransferase Gene: Longitudinal Evidence of a Gene X Environment Interaction |year=2005 |last=Caspi |first=A, ''et al.'' |journal=Biological Psychiatry |volume=57 |issue=10 |pmid=15866551}}</ref> However, a more recent study cast doubt on the proposed connection between this gene and the effects of cannabis on the development of psychosis.<ref name="pmid17978319">{{cite journal |pages=402–7 |doi=10.1192/bjp.bp.107.036129 |laysummary=http://www.medwire-news.md/47/71003/Psychiatry/Cannabis_and_smoking_gene_links_to_schizophrenia_%E2%80%98unfounded%E2%80%99.html |laysource=MedWireNews |title=Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use |year=2007 |last=Zammit |first=S., ''et al.'' |journal=The British Journal of Psychiatry |volume=191 |issue=5 |pmid=17978319}}</ref>
In April 2005, [[Canada|Canadian]] authorities approved the marketing of [[Sativex]], a mouth spray for multiple sclerosis to alleviate pain. Sativex contains tetrahydrocannabinol together with [[cannabidiol]]. It is marketed in [[Canada]] by GW Pharmaceuticals, being the first cannabis-based prescription drug in the world.
 
   
  +
A 2008 German review reported that cannabis was a causal factor in some cases of schizophrenia and stressed the need for better education among the public due to increasingly relaxed access to cannabis.<ref>{{cite journal |pmid=19080993 |year=2008 |last1=Kawohl |first1=W |last2=Rössler |first2=W |title=Cannabis and Schizophrenia: new findings in an old debate |volume=22 |issue=4 |pages=223–9 |journal=Neuropsychiatrie : Klinik, Diagnostik, Therapie und Rehabilitation : Organ der Gesellschaft Osterreichischer Nervenarzte und Psychiater}}</ref> Though cannabis use has increased dramatically in several countries over the past few decades, the rates of psychosis and schizophrenia have not generally increased, casting some doubt over whether the drug can cause cases that would not otherwise have occurred.<ref>{{cite book |author=Degenhardt L, Hall W, Lynskey M |title=Comorbidity between cannabis use and psychosis: Modelling some possible relationships |version=Technical Report No. 121 |publisher=Sydney: National Drug and Alcohol Research Centre |year=2001 |url=http://ndarc.med.unsw.edu.au/NDARCWeb.nsf/resources/TR_18/$file/TR.121.PDF |format=PDF |accessdate=2006-08-19 |oclc=50418990 |isbn=0-7334-1792-2|archiveurl=http://web.archive.org/web/20060524165747/http://ndarc.med.unsw.edu.au/NDARCWeb.nsf/resources/TR_18/$file/TR.121.PDF|archivedate=2006-05-24}}</ref>
== See also ==
 
   
  +
Conversely, research from 2007 reported a correlation between cannabis use and ''increased'' cognitive function in schizophrenic patients.<ref>{{cite journal |doi=10.1016/j.schres.2007.08.006 |title=The neuropsychological correlates of cannabis use in schizophrenia: Lifetime abuse/dependence, frequency of use, and recency of use |year=2007 |last1=Coulston |first1=C |last2=Perdices |first2=M |last3=Tennant |first3=C |journal=Schizophrenia Research |volume=96 |pages=169–184 |pmid=17826035 |issue=1–3}}</ref>
  +
  +
A 2008 [[National Institutes of Health]] study of 19 chronic heavy marijuana users with cardiac and cerebral abnormalities (averaging 28g to 272g (1 to 9+ oz) weekly) and 24 controls found elevated levels of [[Apolipoprotein C3|apolipoprotein C-III]] (apoC-III) in the chronic smokers.<ref>{{cite journal |doi=10.1038/mp.2008.50 |laysummary=http://www.reuters.com/article/healthNews/idUSN1231013620080513 |laysource=[[Reuters]] |laydate=May 13, 2008 |title=Heavy marijuana users show increased serum apolipoprotein C-III levels: evidence from proteomic analyses |year=2008 |last=Jayanthi |first=S, ''et al.'' |journal=Molecular Psychiatry |volume=15 |pages=101–112 |pmid=18475272 |issue=1 |pmc=2797551}}</ref> An increase in apoC-III levels induces the development of [[hypertriglyceridemia]].
  +
  +
A 2008 study by the [[University of Melbourne]] of 15 heavy marijuana users (consuming at least 5 marijuana cigarettes daily for on average 20 years) and 16 controls found an average size difference for the smokers in the [[hippocampus]] (12 percent smaller) and the [[amygdala]] (7 percent smaller).<ref>{{cite journal |doi=10.1001/archpsyc.65.6.694 |title=Regional Brain Abnormalities Associated With Long-term Heavy Cannabis Use |year=2008 |last=Yucel |first=M., ''et al.'' |journal=Archives of General Psychiatry |volume=65 |issue=6 |pages=694–701 |pmid=18519827}}</ref> It has been suggested that such effects can be reversed with long term abstinence.<ref name=Chang2006>{{cite journal |doi=10.1093/brain/awl064 |title=Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation |year=2006 |last1=Chang |first1=L. |journal=Brain |volume=129 |issue=5 |pages=1096–1112}}</ref>
  +
  +
A 2008 study at [[Karolinska Institute]] suggested that young rats treated with [[THC]] received an increased motivation for drug use, heroin in the study, under conditions of stress.<ref>{{Cite book |last=Ellgren, Maria |title=Neurobiological effects of early life cannabis exposure in relation to the gateway hypothesis |date=9 February 2007|isbn=978-91-7357-064-0 |url=http://diss.kib.ki.se/2007/978-91-7357-064-0/ |language=English and Swedish |location=Stockholm}}{{Page needed|date=June 2011}}</ref><ref>{{cite journal |doi=10.1038/sj.npp.1301127 |title=Adolescent Cannabis Exposure Alters Opiate Intake and Opioid Limbic Neuronal Populations in Adult Rats |year=2006 |last1=Ellgren |first1=Maria |last2=Spano |first2=Sabrina M |last3=Hurd |first3=Yasmin L |journal=Neuropsychopharmacology |volume=32 |issue=3 |pages=607–615 |pmid=16823391}}</ref>
  +
  +
A study of around 1000 people in New Zealand found that starting cannabis below the age of 18, when the brain is undergoing major development, induces a 8 point IQ drop on average. This effect was not fully reverted after stopping cannabis use. However, starting cannabis older seems to be safer.<ref name="BBC">[http://www.bbc.co.uk/news/health-19372456 BBC News - Young cannabis smokers run risk of lower IQ, report claims<!-- Bot generated title -->]</ref>
  +
  +
===Opinions and statistical observations indicating side-effects===
  +
A literature review on the subject concluded that "Cannabis use appears to be neither a sufficient nor a necessary cause for psychosis. It is a component cause, part of a complex constellation of factors leading to psychosis."<ref name=Arseneault2004>{{cite journal |doi=10.1192/bjp.184.2.110 |title=Causal association between cannabis and psychosis: examination of the evidence |year=2004 |last1=Arseneault |first1=L. |journal=The British Journal of Psychiatry |volume=184 |issue=2 |pages=110–117 |pmid=14754822 |last2=Cannon |first2=M |last3=Witton |first3=J |last4=Murray |first4=RM}}</ref> In other words, THC and other active substances of cannabis may accentuate symptoms in people already predisposed, but likely don't cause psychotic disorders on their own. However, a French review from 2009 came to a conclusion that cannabis use, particularly that before age 15, was a factor in the development of schizophrenic disorders.<ref name="Laqueille">{{cite journal |pages=1302–5 |doi=10.1016/j.arcped.2009.03.016 |title=Le cannabis est-il un facteur de vulnérabilité des troubles schizophrènes ? |year=2009 |last1=Laqueille |first1=X. |journal=Archives de Pédiatrie |volume=16 |issue=9}}</ref>
  +
  +
A 2009 study found that there was a high prevalence of cannabis in the toxicological analysis of homicide (22%) and suicide victims (11%) in Australia.<ref>{{cite journal |doi=10.1111/j.1360-0443.2009.02565.x |title=Drugs and violent death: comparative toxicology of homicide and non-substance toxicity suicide victims |year=2009 |last1=Darke |first1=Shane |last2=Duflou |first2=Johan |last3=Torok |first3=Michelle |journal=Addiction |volume=104 |issue=6 |pages=1000–1005 |pmid=19466923}}</ref> In a similar study from Sweden it was also found that suicide victims had a significantly higher use of cannabis, but the authors found that "this was explained by markers of psychological and behavioral problems."<ref name="pmid19949196">{{cite journal |doi=10.1192/bjp.bp.109.065227 |title=Cannabis and suicide: longitudinal study |year=2009 |last=Price |first=C., ''et al.'' |journal=The British Journal of Psychiatry |volume=195 |issue=6 |pages=492–497 |pmid=19949196}}</ref>
  +
  +
==Biosynthesis==
  +
[[Image:THC biosynthesis.png|thumb|Biosynthesis of THC]]
  +
In the [[cannabis]] plant, THC occurs mainly as tetrahydrocannabinolic acid (THCA, 2-COOH-THC). [[Geranyl pyrophosphate]] and [[olivetol]]ic acid react, catalysed by an [[enzyme]] to produce [[cannabigerol|cannabigerolic acid]],<ref name="pmid9607329">{{cite journal |doi=10.1016/S0014-5793(98)00450-5 |title=Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol |year=1998 |last1=Fellermeier |first1=M |journal=FEBS Letters |volume=427 |issue=2 |pages=283–5 |pmid=9607329 |last2=Zenk |first2=MH}}</ref> which is cyclized by the enzyme THC acid [[synthase]] to give THCA. Over time, or when heated, THCA is [[decarboxylation|decarboxylated]] producing THC. The pathway for THCA biosynthesis is similar to that which produces the bitter acid [[humulone]] in [[hops]].<ref>{{cite journal |doi=10.1093/jxb/erp210 |title=Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa |year=2009 |last=Marks |first=M. D., ''et al.'' |journal=Journal of Experimental Botany |volume=60 |issue=13 |pages=3715–26 |pmid=19581347 |pmc=2736886}}</ref><ref>{{cite journal |author=Baker PB, Taylor BJ, Gough TA. |title=The tetrahydrocannabinol and tetrahydrocannabinolic acid content of cannabis products |journal=J Pharm Pharmacol. |year=1981 |month=Jun |volume=33 |issue=6 |pages=369–72 |pmid=6115009}}</ref>
  +
  +
===Natural occurrence===
  +
{{main|Medical_cannabis#Difference between C. indica and C. sativa}}
  +
''[[Cannabis indica]]'' may have a [[Cannabidiol|CBD]]:THC ratio 4–5 times that of ''[[Cannabis sativa]]''.
  +
  +
==Metabolism==
  +
THC is metabolized mainly to [[11-Hydroxy-THC|11-OH-THC]] by the body. This [[metabolite]] is still psychoactive and is further oxidized to [[11-nor-9-carboxy-THC]] (THC-COOH). In humans and animals, more than 100 metabolites could be identified, but 11-OH-THC and THC-COOH are the dominating metabolites. Metabolism occurs mainly in the liver by [[cytochrome P450]] enzymes [[CYP2C9]], [[CYP2C19]], and [[CYP3A4]].<ref>{{cite journal |author=Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I |title=Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes |year=2007 |month=March |journal=Life Science |volume=80 |issue=15 |pages=1415–9 |pmid=17303175}}</ref> More than 55% of THC is excreted in the [[feces]] and ~20% in the [[urine]]. The main metabolite in urine is the ester of [[glucuronic acid]] and THC-COOH and free THC-COOH. In the feces, mainly 11-OH-THC was detected.<ref name="pmid16596792">{{cite journal |doi=10.1007/3-540-26573-2_23 |title=Pharmacokinetics and Metabolism of the Plant Cannabinoids, Δ<sup>9</sup>-Tetrahydrocannibinol, Cannabidiol and Cannabinol |year=2005 |last1=Huestis |first1=M. A. |volume=168 |pages=657–90 |journal=Cannabinoids |pmid=16596792 |issue=168 |series=Handbook of Experimental Pharmacology |isbn=3-540-22565-X}}</ref>
  +
  +
===Detection in body fluids===
  +
THC, 11-OH-THC and THC-COOH can be detected and quantitated in blood, urine, hair, oral fluid or sweat using a combination of [[immunoassay]] and [[chromatographic]] techniques as part of a drug use testing program or in a forensic investigation of a traffic or other criminal offense or suspicious death.<ref>{{cite journal |doi=10.1373/clinchem.2008.122119 |title=Δ9-Tetrahydrocannabinol (THC), 11-Hydroxy-THC, and 11-Nor-9-carboxy-THC Plasma Pharmacokinetics during and after Continuous High-Dose Oral THC |year=2009 |last=Schwilke |first=E. W., ''et al.'' |journal=Clinical Chemistry |volume=55 |issue=12 |pages=2180–2189 |pmid=19833841 |pmc=3196989}}</ref><ref>{{cite journal |pmid=20465865 |year=2010 |last=Röhrich |first=J, ''et al.'' |title=Concentrations of Δ<sup>9</sup>-Tetrahydrocannabinol and 11-Nor-9-Carboxytetrahydrocannabinol in Blood and Urine After Passive Exposure to Cannabis Smoke in a Coffee Shop |volume=34 |issue=4 |pages=196–203 |journal=Journal of Analytical Toxicology}}</ref><ref>{{cite book |first1=R. |last1=Baselt |title=Disposition of Toxic Drugs and Chemicals in Man |edition=9th |publisher=Biomedical Publications |location=Seal Beach, CA |year=2011 |pages=1644–8}}</ref>
  +
  +
==Marinol==
  +
'''Dronabinol''' is the [[International Nonproprietary Name|INN]] for a pure [[isomer]] of [[THC]], (–)-''trans''-Δ<sup>9</sup>-tetrahydrocannabinol, which is the main isomer found in cannabis.<ref>{{cite web |url=http://www.incb.org/pdf/e/list/green.pdf |title=List of psychotropic substances under international control |format=PDF |accessdate=2011-04-20|archiveurl=http://web.archive.org/web/20050907150136/http://www.incb.org/pdf/e/list/green.pdf|archivedate=2005-09-07}}{{Page needed|date=June 2011}}</ref> It is sold as '''Marinol''' (a registered trademark of [[Solvay (company)|Solvay Pharmaceuticals]]). Dronabinol is also marketed, sold, and distributed by PAR Pharmaceutical Companies under the terms of a license and distribution agreement with SVC pharma LP, an affiliate of Rhodes Technologies. Synthesized THC may be generally referred to as ''dronabinol''. It is available as a prescription drug (under Marinol<ref>{{cite web |url=http://www.usdoj.gov/dea/ongoing/marinol.html |title=Marinol - the Legal Medical Use for the Marijuana Plant |publisher=[[Drug Enforcement Administration]] |accessdate=2011-04-20}}</ref>) in several countries including the [[United States]] and [[Germany]]. In the United States, Marinol is a [[Schedule III (US)|Schedule III]] drug, available by prescription, considered to be non-narcotic and to have a low risk of physical or mental dependence. Efforts to get cannabis rescheduled as analogous to Marinol have not succeeded thus far, though a [[Removal of cannabis from Schedule I of the Controlled Substances Act#2002 Coalition for Rescheduling Cannabis petition|2002 petition]] has been accepted by the [[Drug Enforcement Administration|DEA]]. As a result of the rescheduling of Marinol from Schedule II to Schedule III, refills are now permitted for this substance. Marinol has been approved by the [[U.S. Food and Drug Administration]] (FDA) in the treatment of [[anorexia (symptom)|anorexia]] in [[AIDS]] patients, as well as for refractory [[nausea]] and [[vomiting]] of patients undergoing [[chemotherapy]], which can remain in the body for up to 5 years, which has raised much controversy as to why natural THC is still a [[Schedule I controlled substance|schedule I]] drug.<ref>{{cite web |first=Carol |last=Eustice |url=http://arthritis.about.com/cs/medmarijuana/a/marijuanadebate.htm |title=Medicinal Marijuana: A Continuing Controversy |publisher=[[About.com]] |date=1997-08-12 |accessdate=2011-04-20}}</ref>
  +
  +
An analog of dronabinol, [[nabilone]], is available commercially in Canada under the trade name Cesamet, manufactured by [[Valeant Pharmaceuticals]]. Cesamet has also received FDA approval and began marketing in the U.S. in 2006; it is a [[Schedule II (US)|Schedule II]] drug.{{Citation needed|date=June 2011}}
  +
  +
In April 2005, [[Canada|Canadian]] authorities approved the marketing of [[Sativex]], a mouth spray for [[multiple sclerosis]] patients, who can use it to alleviate [[neuropathic pain]] and [[spasticity]]. Sativex contains tetrahydrocannabinol together with [[cannabidiol]] and is a preparation of whole cannabis rather than individual cannabinoids. It is marketed in [[Canada]] by GW Pharmaceuticals, being the first cannabis-based prescription drug in the world (in modern times). In addition, [[Sativex]] received European regulatory approval in 2010.<ref>{{cite web |url=http://www.medicines.org.uk/EMC/medicine/23262/SPC/Sativex+Oromucosal+Spray/ |title=Sativex Oromucosal Spray |publisher=medicines.org.uk |date=2011-06-09 |accessdate=2012-02-01}}</ref>
  +
  +
===Comparisons to medical marijuana===
  +
{{Main|Medical marijuana}}
  +
While there has never been a documented human fatality from overdosing on tetrahydrocannabinol or cannabis in its natural form,<ref>[http://www.sciencedirect.com/science/article/pii/S0163725802002528 ScienceDirect.com - Pharmacology & Therapeutics - Cannabinoid analgesia<!-- Bot generated title -->]</ref> Marinol can lead to death.<ref>http://www.oregon.gov/Pharmacy/Imports/Marijuana/Public/DeathsFromMarijuanaV17FDAdrugs.pdf</ref>
  +
  +
Female cannabis plants contain more than 60 cannabinoids, including [[cannabidiol]] (CBD), thought to be the major [[anticonvulsant]] that helps [[multiple sclerosis]] patients;<ref name="pmid6269680">{{cite journal |pmid=6269680 |year=1981 |last=Pickens |first=JT |title=Sedative activity of cannabis in relation to its delta'-trans-tetrahydrocannabinol and cannabidiol content |volume=72 |issue=4 |pages=649–56 |pmc=2071638 |journal=British Journal of Pharmacology}}</ref> and [[cannabichromene]] (CBC), an [[anti-inflammatory]] which may contribute to the [[Analgesic|pain-killing]] effect of cannabis.<ref name=Burns2006>{{cite journal |doi=10.1345/aph.1G217 |title=Cannabinoid Analgesia as a Potential New Therapeutic Option in the Treatment of Chronic Pain |year=2006 |last1=Burns |first1=T. L |journal=Annals of Pharmacotherapy |volume=40 |issue=2 |pages=251–260 |pmid=16449552 |last2=Ineck |first2=JR}}</ref>
  +
  +
It takes over one hour for Marinol to reach full systemic effect,<ref>{{DailyMed|41006|MARINOL (dronabinol) capsule}}</ref> compared to seconds or minutes for [[Cannabis smoking|smoked]] or [[vaporizer (cannabis)|vaporized]] cannabis.<ref name="mckim">{{Cite book |last=McKim |first=William A |title=Drugs and Behavior: An Introduction to Behavioral Pharmacology |edition=5th |publisher=Prentice Hall |year=2002 |page=400 |isbn=0-13-048118-1}}</ref> Some patients accustomed to inhaling just enough cannabis smoke to manage symptoms have complained of too-intense intoxication from Marinol's predetermined dosages. Many patients have said that Marinol produces a more acute psychedelic effect than cannabis, and it has been speculated that this disparity can be explained by the moderating effect of the many non-THC cannabinoids present in cannabis. For that reason, alternative THC-containing medications based on botanical extracts of the cannabis plant such as [[nabiximols]] are being developed. [[Mark Kleiman]], director of the Drug Policy Analysis Program at UCLA's School of Public Affairs said of Marinol, "It wasn't any fun and made the user feel bad, so it could be approved without any fear that it would penetrate the recreational market, and then used as a club with which to beat back the advocates of whole cannabis as a medicine.".<ref name="Respectable Reefer">{{Cite news |last=Greenberg |first=Gary |title=Respectable Reefer |publisher=Mother Jones |date=2005-11-01 |url=http://motherjones.com/politics/2005/11/respectable-reefer |accessdate = 8 April 2010}}</ref> United States federal law currently registers dronabinol as a [[Schedule III controlled substance]], but all other cannabinoids remain [[Schedule I controlled substance|Schedule I]], excepting synthetics like [[nabilone]].<ref>[http://onlineathens.com/stories/070399/new_pot.shtml Government eases restrictions on pot derivative | Online Athens<!-- Bot generated title -->]</ref>
  +
  +
==Regulatory history==
  +
Since at least 1986, the trend has been for THC in general, and especially the Marinol preparation, to be downgraded to less and less stringently-controlled schedules of controlled substances, in the U.S. and throughout the rest of the world.
  +
  +
On July 13, 1986, the [[Drug Enforcement Administration]] (DEA) issued a Final Rule and Statement of Policy authorizing the "Rescheduling of Synthetic Dronabinol in Sesame Oil and Encapsulated in Soft Gelatin Capsules From Schedule I to Schedule II" (DEA 51 FR 17476-78). This permitted medical use of Marinol, albeit with the severe restrictions associated with Schedule II status. For instance, refills of Marinol prescriptions were not permitted. At its 1045th meeting, on April 29, 1991, the [[Commission on Narcotic Drugs]], in accordance with article 2, paragraphs 5 and 6, of the [[Convention on Psychotropic Substances]], decided that Δ<sup>9</sup>-tetrahydrocannabinol (also referred to as Δ<sup>9</sup>-THC) and its stereochemical variants should be transferred from Schedule I to Schedule II of that Convention. This released Marinol from the restrictions imposed by Article 7 of the Convention (See also [[United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances]]).{{Citation needed|date=June 2011}}
  +
  +
An article published in the April–June 1998 issue of the [[Journal of Psychoactive Drugs]] found that "Healthcare professionals have detected no indication of scrip-chasing or doctor-shopping among the patients for whom they have prescribed dronabinol". The authors state that Marinol has a low potential for abuse.<ref name="pmid9692381">{{cite journal |pmid=9692381 |year=1998 |last1=Calhoun |first1=SR |last2=Galloway |first2=GP |last3=Smith |first3=DE |title=Abuse potential of dronabinol (Marinol) |volume=30 |issue=2 |pages=187–96 |journal=Journal of Psychoactive Drugs |doi=10.1080/02791072.1998.10399689}}{{Better source|date=June 2011}}</ref>
  +
  +
In 1999, Marinol was rescheduled from Schedule II to III of the [[Controlled Substances Act]], reflecting a finding that THC had a potential for abuse less than that of [[cocaine]] and [[heroin]]. This rescheduling constituted part of the argument for a 2002 petition for [[removal of cannabis from Schedule I of the Controlled Substances Act]], in which petitioner [[Jon Gettman]] noted, "Cannabis is a natural source of dronabinol (THC), the ingredient of Marinol, a Schedule III drug. There are no grounds to schedule cannabis in a more restrictive schedule than Marinol".<ref>{{cite web |url=http://www.drugscience.org/PDF/Petition_Final_2002.pdf |title=Petition to Reschedule Cannabis (Marijuana) |date=October 9, 2002 |publisher=[[Coalition for Rescheduling Cannabis]]}}{{Better source|date=June 2011}}</ref>
  +
  +
At its 33rd meeting, in 2003, the [[World Health Organization]] Expert Committee on Drug Dependence recommended transferring THC to [[Convention on Psychotropic Substances#Schedules of Controlled Substances|Schedule IV]] of the Convention, citing its medical uses and low abuse potential.<ref>{{cite web|url=http://www.who.int/substance_abuse/right_committee/en/index.html|title=WHO Expert Committee on Drug Dependence}}</ref>
  +
  +
==See also==
  +
{{portal|Cannabis}}
  +
* [[Anandamide]]
  +
* [[Cannabis (drug)]]
  +
* [[Psychoactive drug]]
 
* [[Cannabinoids]]
 
* [[Cannabinoids]]
  +
** [[11-Hydroxy-THC]], [[metabolite]] of THC
** [[HU-210]]
 
  +
** [[Anandamide]], [[2-Arachidonoylglycerol]], endogenous cannabinoid agonists
  +
** [[Cannabidiol]] (CBD), an [[isomer]] of THC
  +
** [[Cannabinol]] (CBN), a metabolite of THC
  +
** [[Dimethylheptylpyran]]
  +
** [[Parahexyl]]
  +
** [[Tetrahydrocannabinolic acid]], the biosynthetic precursor for THC
  +
** [[HU-210]], [[WIN 55,212-2]], [[JWH-133]], synthetic cannabinoid agonists
 
* [[Medical cannabis]]
 
* [[Medical cannabis]]
* [[Dronabinol]]
 
 
* [[War on Drugs]]
 
* [[War on Drugs]]
* [[Cannabis (drug)|Cannabis]]
 
* [[THC Ministry]]
 
 
* [[Cannabis rescheduling in the United States]]
 
* [[Cannabis rescheduling in the United States]]
* [[Cannabidiol]], an [[isomer]] of THC
 
* [[Psychoactive drug]]
 
 
* [[Health issues and the effects of cannabis]]
 
* [[Health issues and the effects of cannabis]]
   
== References ==
+
==References==
  +
{{Reflist|30em}}
<references/>
 
   
  +
==Further reading==
== External links ==
 
  +
{{Refbegin}}
  +
* {{Cite journal |author=Calhoun SR, Galloway GP, Smith DE |title=Abuse potential of dronabinol (Marinol) |journal=J Psychoactive Drugs |volume=30 |issue=2 |pages=187–96 |year=1998 |pmid=9692381 |doi=10.1080/02791072.1998.10399689}}
  +
* [http://www.marijuananews.com/marijuananews/cowan/dea_moves_marinol_to_schedule_th.htm DEA Moves Marinol To Schedule Three, But Leaves Marijuana in Schedule One. The Magic of Sesame Oil], [[Richard Cowan (cannabis activist)|Richard Cowan]], MarijuanaNews.Com.
  +
* [http://www.drugscience.org/pt/b.htm Petition to Reschedule Cannabis (Marijuana) per 21 CFR §1308.44(b)], Filed October 9, 2002 with the DEA by the [[Coalition for Rescheduling Cannabis]].
  +
{{Refend}}
   
  +
==External links==
* [http://www.sciam.com/article.cfm?articleID=000A844E-8FBE-119B-8EA483414B7FFE9F&ref=sciam&chanID=sa004 Scientific American] Marijuana research
 
  +
* [http://druginfo.nlm.nih.gov/drugportal/dpdirect.jsp?name=Tetrahydrocannabinol U.S. National Library of Medicine: Drug Information Portal - Tetrahydrocannabinol]
* [http://www.erowid.org/plants/cannabis/cannabis_info2.shtml Erowid] Compounds found in ''Cannabis sativa''.
 
* [http://www.eurekalert.org/pub_releases/2005-12/cp-mot121505.php Machinery of the "marijuana munchies"]
 
* [http://www.erowid.org/plants/cannabis/cannabis_spirit6.shtml Erowid interview] An interesting look into a group advocating the intentional, spiritual, and transformative use of cannabis.
 
{{ChemicalSources}}
 
   
 
{{Cannabinoids}}
 
{{Cannabinoids}}
  +
{{Cannabis}}
  +
{{Drug use}}
  +
{{Euphoriants}}
  +
{{Hallucinogens}}
  +
{{Antiemetics and antinauseants}}
  +
{{Orexigenics}}
  +
{{Ancient anaesthesia-footer}}
   
  +
[[Category:Amorphous solids]]
  +
[[Category:Antiemetics]]
  +
[[Category:Entheogens]]
 
[[Category:Cannabinoids]]
 
[[Category:Cannabinoids]]
  +
[[Category:Chemical compounds found in Cannabis]]
<!--
 
  +
[[Category:Euphoriants]]
[[ca:Tetrahidrocannabinol]]
 
  +
[[Category:Natural phenols]]
[[cs:Tetrahydrocannabinol]]
 
  +
[[Category:Benzochromenes]]
[[de:Tetrahydrocannabinol]]
 
  +
[[es:Tetrahidrocannabinol]]
 
[[fr:Tétrahydrocannabinol]]
 
[[gl:Tetrahidrocannabinol]]
 
[[it:Delta-9-Tetraidrocannabinolo]]
 
[[he:THC]]
 
[[lt:Tetrahidrokanabinolis]]
 
[[nl:Tetrahydrocannabinol]]
 
[[ja:テトラヒドロカンナビノール]]
 
[[no:Tetrahydrocannabinol]]
 
[[pl:Tetrahydrokannabinol]]
 
[[pt:THC]]
 
[[ru:Тетрагидроканнабинол]]
 
[[sk:Tetrahydrokanabinol]]
 
[[sl:Tetrahidrokanabinol]]
 
[[sr:Tetrahidrokanabinol]]
 
[[fi:Tetrahydrokannabinoli]]
 
[[sv:Tetrahydrocannabinol]]
 
[[th:เตตร้าไฮโดรแคนนาบินอล]]
 
[[tr:THC]]
 
[[uk:Тетрагідроканнабінол]]
 
-->
 
 
{{enWP|Tetrahydrocannabinol}}
 
{{enWP|Tetrahydrocannabinol}}

Latest revision as of 03:09, 26 August 2014

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


Tetrahydrocannabinol chemical structure
Tetrahydrocannabinol

(−)-(6aR,10aR)-6,6,9-trimethyl-
3-pentyl-6a,7,8,10a-tetrahydro-
6H-benzo[c]chromen-1-ol
IUPAC name
CAS number
1972-08-3
ATC code

A04AD10

PubChem
16078
DrugBank
DB00470
Chemical formula {{{chemical_formula}}}
Molecular weight 314.4636
Bioavailability 10–35% (inhalation), 6–20% (oral)[1]
Metabolism mostly hepatic by CYP2C[1]
Elimination half-life 1.6–59 h,[1] 25–36 h (orally administered dronabinol)
Excretion 65–80% (feces), 20–35% (urine) as acid metabolites[1]
Pregnancy category C
Legal status Schedule I and III (US)
Routes of administration orally, smoked (or vaporized)


Tetrahydrocannabinol (/ˌtɛtrəˌhdrɵkəˈnæbɨnɔːl/ Template:Respell or /ˌtɛtrəˌhdrɵkəˈnæbɨnɒl/ Template:Respell;[2] THC), or more precisely its main isomer (−)-trans-Δ9-tetrahydrocannabinol ((6aR,10aR)-delta-9-tetrahydrocannabinol), is the principal psychoactive constituent (or cannabinoid) of the cannabis plant. First isolated in 1964, in its pure form, by Israeli scientists Raphael Mechoulam, Yechiel Gaoni and colleagues at the Hebrew University of Jerusalem,[3][4][5] it is a glassy solid when cold, and becomes viscous and sticky if warmed. A pharmaceutical formulation of (−)-trans-Δ9-tetrahydrocannabinol, known by its INN dronabinol, is available by prescription in the U.S. and Canada under the brand name Marinol. An aromatic terpenoid, THC has a very low solubility in water, but good solubility in most organic solvents, specifically lipids and alcohols.[6]

Like most pharmacologically-active secondary metabolites of plants, THC in cannabis is assumed to be involved in self-defense, perhaps against herbivores.[7] THC also possesses high UV-B (280–315 nm) absorption properties, which, it has been speculated, could protect the plant from harmful UV radiation exposure.[8][9][10]

Tetrahydrocannabinol with double bond isomers and their stereoisomers is one of only three cannabinoids scheduled by Convention on Psychotropic Substances (the other two are dimethylheptylpyran and parahexyl). Note that cannabis as a plant is scheduled by Single Convention on Narcotic Drugs (Schedule I and IV).

Pharmacology

The pharmacological actions of THC result from its partial agonist activity at the cannabinoid receptor CB1 (Ki=10nM[11]), located mainly in the central nervous system, and the CB2 receptor (Ki=24nM[12]), mainly expressed in cells of the immune system.[13] The psychoactive effects of THC are primarily mediated by its activation of CB1G-protein coupled receptors, which result in a decrease in the concentration of the second messenger molecule cAMP through inhibition of adenylate cyclase.[14]

The presence of these specialized cannabinoid receptors in the brain led researchers to the discovery of endocannabinoids, such as anandamide and 2-arachidonoyl glyceride (2-AG). THC targets receptors in a manner far less selective than endocannabinoid molecules released during retrograde signaling, as the drug has a relatively low cannabinoid receptor efficacy and affinity. In populations of low cannabinoid receptor density, THC may act to antagonize endogenous agonists that possess greater receptor efficacy.[15] THC is a lipophilic molecule and may bind non-specifically to a variety of receptors in the brain and body, such as adipose tissue. For a review of the mechanisms behind endocannabinoid synaptic transmission, see the endocannabinoid system.

Several studies have suggested that THC also has an anticholinesterase action[16][17] which may implicate it as a potential treatment for Alzheimer's and Myasthenia Gravis.

Effects

THC has mild to moderate analgesic effects, and cannabis can be used to treat pain by altering transmitter release on dorsal root ganglion of the spinal cord and in the periaqueductal gray.[14] Other effects include relaxation, alteration of visual, auditory, and olfactory senses, fatigue, and appetite stimulation. THC has marked antiemetic properties, and may also reduce aggression in certain subjects.[18]

Due to its partial agonistic activity, THC appears to result in greater downregulation of cannabinoid receptors than endocannabinoids, further limiting its efficacy over other cannabinoids. While tolerance may limit the maximal effects of certain drugs, evidence suggests that tolerance develops irregularly for different effects with greater resistance for primary over side-effects, and may actually serve to enhance the drug's therapeutic window.[15] However, this form of tolerance appears to be irregular throughout mouse brain areas and warrants future research.

THC reduces mouse male fertility in vivo, by inhibiting ATP production in sperm.[19]

THC, as well as other cannabinoids that contain a phenol group, possesses mild antioxidant activity sufficient to protect neurons against oxidative stress, such as that produced by glutamate-induced excitotoxicity.[13]

Appetite and taste

It has long been known that, in humans, cannabis increases appetite and consumption of food. The mechanism for appetite stimulation in subjects is believed to result from activity in the gastro-hypothalamic axis. CB1 activity in the hunger centers in the hypothalamus increases the palatability of food when levels of a hunger hormone ghrelin increase prior to consuming a meal. After chyme is passed into the duodenum, signaling hormones such as cholecystokinin and leptin are released, causing reduction in gastric emptying and transmission of satiety signals to the hypothalamus. Cannabinoid activity is reduced through the satiety signals induced by leptin release.

Based on the connection between palatable food and stimulation of dopamine (DA) transmission in the shell of the nucleus accumbens (NAc), it has been suggested that cannabis does not only stimulate taste, but possibly the hedonic value of food. A taste-reactivity paradigm in mice was used to investigate the influence of THC on DA release in the NAc upon application of sucrose or quinine solutions. THC application was found to enhance DA release in the NAc from sucrose, but not quinine, in a dose-dependent manner. This effect was enhanced with sweeter solution, which correlated with an increase the researchers' hedonic-behavior assessment as well. The mechanism behind this effect was elucidated by application of rimonabant, a CB1 receptor inverse agonist, known to reduce intake of food or sweet solutions. However, the same DA enhancement effect was not found upon repeated application of sucrose, suggesting that the DA response undergoes habituation.[20] The inconsistency between DA habituation and enduring appetite observed after THC application suggests that cannabis-induced appetite stimulation is not only mediated by enhanced pleasure from platable food, but through THC stimulation of another appetitive response as well.

Antagonism

The effects of the drug can be suppressed by the CB1 receptor antagonist rimonabant (SR141716A) as well as opioid receptor antagonists (opioid blockers) naloxone and naloxonazine.[21] The α7 nicotinic receptor antagonist methyllycaconitine can block self-administration of THC in rates comparable to the effects of varenicline on nicotine administration.[22]

Isomerism

7 double bond isomers and their 30 stereoisomers
Dibenzopyran numbering Monoterpenoid numbering Number of stereoisomers Natural occurrence Convention on Psychotropic Substances Schedule Structure
Short name Chiral centers Full name Short name Chiral centers
Δ6a,7-tetrahydrocannabinol 9 and 10a 8,9,10,10a-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol Δ4-tetrahydrocannabinol 1 and 3 4 No Schedule I File:Delta6a,7-Tetrahydrocannabinol.png
Δ7-tetrahydrocannabinol 6a, 9 and 10a 6a,9,10,10a-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol Δ5-tetrahydrocannabinol 1, 3 and 4 8 No Schedule I File:Delta7-Tetrahydrocannabinol.png
Δ8-tetrahydrocannabinol 6a and 10a 6a,7,10,10a-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol Δ6-tetrahydrocannabinol 3 and 4 4 Yes Schedule I File:Delta8-Tetrahydrocannabinol.png
Δ9,11-tetrahydrocannabinol 6a and 10a 6a,7,8,9,10,10a-hexahydro-6,6-dimethyl-9-methylene-3-pentyl-6H-dibenzo[b,d]pyran-1-ol Δ1,7-tetrahydrocannabinol 3 and 4 4 No Schedule I File:Delta9,11-Tetrahydrocannabinol.png
Δ9-tetrahydrocannabinol 6a and 10a 6a,7,8,10a-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol Δ1-tetrahydrocannabinol 3 and 4 4 Yes Schedule II File:Delta9-Tetrahydrocannabinol.png
Δ10-tetrahydrocannabinol 6a and 9 6a,7,8,9-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol Δ2-tetrahydrocannabinol 1 and 4 4 No Schedule I File:Delta10-Tetrahydrocannabinol.png
Δ6a,10a-tetrahydrocannabinol 9 7,8,9,10-tetrahydro-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d]pyran-1-ol Δ3-tetrahydrocannabinol 1 2 No Schedule I File:Delta6a,10a-Tetrahydrocannabinol.png
4 stereoisomers of Δ9-tetrahydrocannabinol
Names Description Natural occurrence Structure
(−)-trans-Δ9-tetrahydrocannabinol (6aR,10aR)-Δ9-tetrahydrocannabinol levorotary trans Yes File:(−)-(6aR,10aR)-Δ9-Tetrahydrocannabinol (with hydrogen atoms shown).svg
(−)-cis-Δ9-tetrahydrocannabinol (6aS,10aR)-Δ9-tetrahydrocannabinol levorotary cis Yes File:(−)-(6aS,10aR)-Δ9-Tetrahydrocannabinol (with hydrogen atoms shown).svg
(+)-trans-Δ9-tetrahydrocannabinol (6aS,10aS)-Δ9-tetrahydrocannabinol dextrorotary trans No File:(+)-(6aS,10aS)-Δ9-Tetrahydrocannabinol (with hydrogen atoms shown).svg
(+)-cis-Δ9-tetrahydrocannabinol (6aR,10aS)-Δ9-tetrahydrocannabinol dextrorotary cis No File:(+)-(6aR,10aS)-Δ9-Tetrahydrocannabinol (with hydrogen atoms shown).svg

Note that 6H-dibenzo[b,d]pyran-1-ol is the same as 6H-benzo[c]chromen-1-ol.

See also: Cannabidiol#Isomerism, John C. Leffingwell Chirality & Bioactivity I.: Pharmacology, 2003.

Toxicity

Thc

3D rendering of the THC molecule

File:White widow.jpg

A hybrid Cannabis strain (White Widow) flower coated with trichomes, which contain more THC than any other part of the plant

File:Trichomes on a Cannabis Sativa Flower.jpg

Closeup of THC-filled trichomes on a Cannabis sativa leaf

There has never been a documented human fatality solely from overdosing on tetrahydrocannabinol or cannabis in its natural form,[23] though the synthetic THC pill "Marinol" was cited by the FDA as being responsible for 4 deaths between January 1, 1997 and June 30, 2005.[24] Information about THC's toxicity is primarily based on results from animal studies. The toxicity depends on the route of administration and the laboratory animal. Absorption is limited by serum lipids, which can become saturated with THC, mitigating toxicity.[25]

Research

The discovery of THC was first described in "Isolation, structure and partial synthesis of an active constituent of hashish", published in the Journal of the American Chemical Society in 1964.[3] Research was also published in the academic journal Science, with "Marijuana chemistry" by Raphael Mechoulam in June 1970,[26] followed by "Chemical basis of hashish activity" in August 1970.[27] In the latter, the team of researchers from Hebrew University Pharmacy School and Tel Aviv University Medical School experimented on monkeys to isolate the active compounds in hashish. Their results provided evidence that, except for tetrahydrocannabinol, no other major active compounds were present in hashish.

Studies in humans

Evidence suggests that THC helps alleviate symptoms suffered both by AIDS patients, and by cancer patients undergoing chemotherapy, by increasing appetite and decreasing nausea.[28][29][30][31] It has also been shown to assist some glaucoma patients by reducing pressure within the eye, and is used in the form of cannabis by a number of multiple sclerosis patients, who use it to alleviate neuropathic pain and spasticity. The National Multiple Sclerosis Society is currently supporting further research into these uses.[32] Studies in humans have been limited by federal and state laws criminalizing marijuana.

In August 2009 a phase IV clinical trial by the Hadassah Medical Center in Jerusalem, Israel started to investigate the effects of THC on post-traumatic stress disorders.[33]

Dronabinol's usefulness as a treatment for Tourette syndrome cannot be determined until/unless longer controlled studies on larger samples are undertaken.[34][35][36]

Research on THC has shown that the cannabinoid receptors are responsible for mediated inhibition of dopamine release in the retina.[37]

In a 1981 double-blind, placebo-controlled study, oral THC was given to Multiple Sclerosis patients. A decrease in spasticity was shown when compared with placebo.[38] In a 1983 single-blind, placebo-controlled study, decreased tremor occurred in 1/4 of Multiple Sclerosis patients.[39]

Several studies have been conducted with spinal injury patients and THC. Decreased tremor occurred in 2/5 patients in a 1986 double-blind, placebo-controlled crossover study.[40] THC was shown to decrease spasticity and pain in a 1990 double-blind, placebo-controlled study.[41]

Studies in animals and in vitro

There is evidence to suggest THC can prevent Alzheimer's Disease in an animal model by preventing the inflammation caused by microglia cells which are activated by binding of amyloid protein.[42]

In 2006, researchers from Scripps Research Institute, using both computer modeling and biochemical assays, found THC "may provide an improved therapeutic for Alzheimer's disease" that would treat "both the symptoms and progression" of the disease. THC, they found, inhibits the formation of amyloid plaque (the primary marker for Alzheimer's disease). The authors concluded that their research offered "convincing evidence that THC possesses remarkable inhibitory qualities."[43] THC was found to be "considerably more effective" than two of the leading Alzheimer's drugs on the market, donepezil and tacrine.[44]

THC may also be an effective cancer treatment, with studies showing tumor size reduction in mice conducted in 1975[45] and 2007,[46] as well as in a pilot study in humans with glioblastoma multiforme (a type of brain cancer).[47] THC has also been found to attenuate conditioned retching and sickness, experimentally verifying anecdotal reports that THC alleviates nausea and vomiting when undergoing chemotherapy.[48]

A two-year study in which rats and mice were force-fed tetrahydrocannabinol dissolved in corn oil showed reduced body mass, enhanced survival rates, and decreased tumor incidences in several sites, mainly organs under hormonal control. It also caused testicular atrophy and uterine and ovarian hypoplasia, as well as hyperactivity and convulsions immediately after administration, of which the onset and frequency were dose related.[49]

Research in rats indicates that THC prevents hydroperoxide-induced oxidative damage as well as or better than other antioxidants in a chemical (Fenton reaction) system and neuronal cultures.[50] In mice low doses of Δ9-THC reduces the progression of atherosclerosis.[51]

Research has also shown that past claims of brain damage from cannabis use fail to hold up to the scientific method.[52] Instead, recent studies with synthetic cannabinoids show that activation of CB1 receptors can facilitate neurogenesis,[53] as well as neuroprotection,[54] and can even help prevent natural neural degradation from neurodegenerative diseases such as MS, Parkinson's, and Alzheimer's. This, along with research into the CB2 receptor (throughout the immune system), has given the case for medical marijuana more support.[55][56] THC is both a CB1 and CB2 agonist.[57]

Scientific studies indicating side-effects

Conceivable long-term ill effects of THC on humans are disputed but not improbable, yet its status as an illegal drug in most countries can make research difficult, for instance in the United States where the National Institute on Drug Abuse was the only legal source of cannabis for researchers until it recently became legalized in Colorado and Washington.[58]

Some studies claim a variety of negative effects associated with long-term use, including short-term memory loss.[59][60] Using positron emission tomography (PET), one study reports altered memory-related brain function (23% better memory for the cannabis users in recalling the end of a list of things to remember, but 19% worse memory for cannabis users in recalling the middle of a list of things to remember) in chronic daily cannabis users.[61]

Some studies have suggested that cannabis users have a greater risk of developing psychosis than non-users. This risk is most pronounced in cases with an existing risk of psychotic disorder.[62] Other studies have made similar associations, especially in individuals predisposed to psychosis prior to cannabis use.[63] A 2005 paper from the Dunedin study suggested an increased risk in the development of psychosis linked to polymorphisms in the COMT gene.[64] However, a more recent study cast doubt on the proposed connection between this gene and the effects of cannabis on the development of psychosis.[65]

A 2008 German review reported that cannabis was a causal factor in some cases of schizophrenia and stressed the need for better education among the public due to increasingly relaxed access to cannabis.[66] Though cannabis use has increased dramatically in several countries over the past few decades, the rates of psychosis and schizophrenia have not generally increased, casting some doubt over whether the drug can cause cases that would not otherwise have occurred.[67]

Conversely, research from 2007 reported a correlation between cannabis use and increased cognitive function in schizophrenic patients.[68]

A 2008 National Institutes of Health study of 19 chronic heavy marijuana users with cardiac and cerebral abnormalities (averaging 28g to 272g (1 to 9+ oz) weekly) and 24 controls found elevated levels of apolipoprotein C-III (apoC-III) in the chronic smokers.[69] An increase in apoC-III levels induces the development of hypertriglyceridemia.

A 2008 study by the University of Melbourne of 15 heavy marijuana users (consuming at least 5 marijuana cigarettes daily for on average 20 years) and 16 controls found an average size difference for the smokers in the hippocampus (12 percent smaller) and the amygdala (7 percent smaller).[70] It has been suggested that such effects can be reversed with long term abstinence.[71]

A 2008 study at Karolinska Institute suggested that young rats treated with THC received an increased motivation for drug use, heroin in the study, under conditions of stress.[72][73]

A study of around 1000 people in New Zealand found that starting cannabis below the age of 18, when the brain is undergoing major development, induces a 8 point IQ drop on average. This effect was not fully reverted after stopping cannabis use. However, starting cannabis older seems to be safer.[74]

Opinions and statistical observations indicating side-effects

A literature review on the subject concluded that "Cannabis use appears to be neither a sufficient nor a necessary cause for psychosis. It is a component cause, part of a complex constellation of factors leading to psychosis."[75] In other words, THC and other active substances of cannabis may accentuate symptoms in people already predisposed, but likely don't cause psychotic disorders on their own. However, a French review from 2009 came to a conclusion that cannabis use, particularly that before age 15, was a factor in the development of schizophrenic disorders.[76]

A 2009 study found that there was a high prevalence of cannabis in the toxicological analysis of homicide (22%) and suicide victims (11%) in Australia.[77] In a similar study from Sweden it was also found that suicide victims had a significantly higher use of cannabis, but the authors found that "this was explained by markers of psychological and behavioral problems."[78]

Biosynthesis

File:THC biosynthesis.png

Biosynthesis of THC

In the cannabis plant, THC occurs mainly as tetrahydrocannabinolic acid (THCA, 2-COOH-THC). Geranyl pyrophosphate and olivetolic acid react, catalysed by an enzyme to produce cannabigerolic acid,[79] which is cyclized by the enzyme THC acid synthase to give THCA. Over time, or when heated, THCA is decarboxylated producing THC. The pathway for THCA biosynthesis is similar to that which produces the bitter acid humulone in hops.[80][81]

Natural occurrence

Main article: Medical_cannabis#Difference between C. indica and C. sativa

Cannabis indica may have a CBD:THC ratio 4–5 times that of Cannabis sativa.

Metabolism

THC is metabolized mainly to 11-OH-THC by the body. This metabolite is still psychoactive and is further oxidized to 11-nor-9-carboxy-THC (THC-COOH). In humans and animals, more than 100 metabolites could be identified, but 11-OH-THC and THC-COOH are the dominating metabolites. Metabolism occurs mainly in the liver by cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP3A4.[82] More than 55% of THC is excreted in the feces and ~20% in the urine. The main metabolite in urine is the ester of glucuronic acid and THC-COOH and free THC-COOH. In the feces, mainly 11-OH-THC was detected.[83]

Detection in body fluids

THC, 11-OH-THC and THC-COOH can be detected and quantitated in blood, urine, hair, oral fluid or sweat using a combination of immunoassay and chromatographic techniques as part of a drug use testing program or in a forensic investigation of a traffic or other criminal offense or suspicious death.[84][85][86]

Marinol

Dronabinol is the INN for a pure isomer of THC, (–)-trans9-tetrahydrocannabinol, which is the main isomer found in cannabis.[87] It is sold as Marinol (a registered trademark of Solvay Pharmaceuticals). Dronabinol is also marketed, sold, and distributed by PAR Pharmaceutical Companies under the terms of a license and distribution agreement with SVC pharma LP, an affiliate of Rhodes Technologies. Synthesized THC may be generally referred to as dronabinol. It is available as a prescription drug (under Marinol[88]) in several countries including the United States and Germany. In the United States, Marinol is a Schedule III drug, available by prescription, considered to be non-narcotic and to have a low risk of physical or mental dependence. Efforts to get cannabis rescheduled as analogous to Marinol have not succeeded thus far, though a 2002 petition has been accepted by the DEA. As a result of the rescheduling of Marinol from Schedule II to Schedule III, refills are now permitted for this substance. Marinol has been approved by the U.S. Food and Drug Administration (FDA) in the treatment of anorexia in AIDS patients, as well as for refractory nausea and vomiting of patients undergoing chemotherapy, which can remain in the body for up to 5 years, which has raised much controversy as to why natural THC is still a schedule I drug.[89]

An analog of dronabinol, nabilone, is available commercially in Canada under the trade name Cesamet, manufactured by Valeant Pharmaceuticals. Cesamet has also received FDA approval and began marketing in the U.S. in 2006; it is a Schedule II drug.[citation needed]

In April 2005, Canadian authorities approved the marketing of Sativex, a mouth spray for multiple sclerosis patients, who can use it to alleviate neuropathic pain and spasticity. Sativex contains tetrahydrocannabinol together with cannabidiol and is a preparation of whole cannabis rather than individual cannabinoids. It is marketed in Canada by GW Pharmaceuticals, being the first cannabis-based prescription drug in the world (in modern times). In addition, Sativex received European regulatory approval in 2010.[90]

Comparisons to medical marijuana

Main article: Medical marijuana

While there has never been a documented human fatality from overdosing on tetrahydrocannabinol or cannabis in its natural form,[91] Marinol can lead to death.[92]

Female cannabis plants contain more than 60 cannabinoids, including cannabidiol (CBD), thought to be the major anticonvulsant that helps multiple sclerosis patients;[93] and cannabichromene (CBC), an anti-inflammatory which may contribute to the pain-killing effect of cannabis.[94]

It takes over one hour for Marinol to reach full systemic effect,[95] compared to seconds or minutes for smoked or vaporized cannabis.[96] Some patients accustomed to inhaling just enough cannabis smoke to manage symptoms have complained of too-intense intoxication from Marinol's predetermined dosages. Many patients have said that Marinol produces a more acute psychedelic effect than cannabis, and it has been speculated that this disparity can be explained by the moderating effect of the many non-THC cannabinoids present in cannabis. For that reason, alternative THC-containing medications based on botanical extracts of the cannabis plant such as nabiximols are being developed. Mark Kleiman, director of the Drug Policy Analysis Program at UCLA's School of Public Affairs said of Marinol, "It wasn't any fun and made the user feel bad, so it could be approved without any fear that it would penetrate the recreational market, and then used as a club with which to beat back the advocates of whole cannabis as a medicine.".[97] United States federal law currently registers dronabinol as a Schedule III controlled substance, but all other cannabinoids remain Schedule I, excepting synthetics like nabilone.[98]

Regulatory history

Since at least 1986, the trend has been for THC in general, and especially the Marinol preparation, to be downgraded to less and less stringently-controlled schedules of controlled substances, in the U.S. and throughout the rest of the world.

On July 13, 1986, the Drug Enforcement Administration (DEA) issued a Final Rule and Statement of Policy authorizing the "Rescheduling of Synthetic Dronabinol in Sesame Oil and Encapsulated in Soft Gelatin Capsules From Schedule I to Schedule II" (DEA 51 FR 17476-78). This permitted medical use of Marinol, albeit with the severe restrictions associated with Schedule II status. For instance, refills of Marinol prescriptions were not permitted. At its 1045th meeting, on April 29, 1991, the Commission on Narcotic Drugs, in accordance with article 2, paragraphs 5 and 6, of the Convention on Psychotropic Substances, decided that Δ9-tetrahydrocannabinol (also referred to as Δ9-THC) and its stereochemical variants should be transferred from Schedule I to Schedule II of that Convention. This released Marinol from the restrictions imposed by Article 7 of the Convention (See also United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances).[citation needed]

An article published in the April–June 1998 issue of the Journal of Psychoactive Drugs found that "Healthcare professionals have detected no indication of scrip-chasing or doctor-shopping among the patients for whom they have prescribed dronabinol". The authors state that Marinol has a low potential for abuse.[99]

In 1999, Marinol was rescheduled from Schedule II to III of the Controlled Substances Act, reflecting a finding that THC had a potential for abuse less than that of cocaine and heroin. This rescheduling constituted part of the argument for a 2002 petition for removal of cannabis from Schedule I of the Controlled Substances Act, in which petitioner Jon Gettman noted, "Cannabis is a natural source of dronabinol (THC), the ingredient of Marinol, a Schedule III drug. There are no grounds to schedule cannabis in a more restrictive schedule than Marinol".[100]

At its 33rd meeting, in 2003, the World Health Organization Expert Committee on Drug Dependence recommended transferring THC to Schedule IV of the Convention, citing its medical uses and low abuse potential.[101]

See also

.

References

  1. 1.0 1.1 1.2 1.3 Grotenhermen F (2003). Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 42 (4): 327–60.
  2. Dictionary Reference: tetrahydrocannabinol: /ˌtɛtrəˌhdrəkəˈnæbəˌnɔːl/, /-ˌnɒl/
  3. 3.0 3.1 (1964). Isolation, structure and partial synthesis of an active constituent of hashish. Journal of the American Chemical Society 86 (8): 1646–1647.
  4. Interview with the winner of the first ECNP Lifetime Achievement Award: Raphael Mechoulam, Israel February 2007
  5. (2007). Cannabinoids: A Secret History. Chemical Heritage Newsmagazine 25 (2).
  6. Garrett, Edward R., C. Anthony Hunt (July 1974). Physicochemical properties, solubility, and protein binding of Δ9 -tetrahydrocannabinol. J. Pharm. Sci. 63 (7): 1056–64.
  7. Pate, David W. (1994). Chemical ecology of Cannabis. Journal of the International Hemp Association 1 (29): 32–37.
  8. Pate, David W. (1983). Possible role of ultraviolet radiation in evolution of Cannabis chemotypes. Economic Botany 37 (4): 396–405.
  9. (1987). Photochemical decomposition of cannabidiol in its resin base. Phytochemistry 26 (4): 1216–1217.
  10. (1987). UV-B radiation effects on photosynthesis, growth and cannabinoid production of two Cannabis sativa chemotypes. Photochemistry and Photobiology 46 (2): 201–206.
  11. PDSP Database - UNC. URL accessed on 11 June 2013.
  12. PDSP Database - UNC. URL accessed on 11 June 2013.
  13. 13.0 13.1 PMID 16570099 (PMID 16570099)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  14. 14.0 14.1 PMID 11316486 (PMID 11316486)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  15. 15.0 15.1 PMID 17828291 (PMID 17828291)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  16. Brown, Hugh (1972). Possible anticholinesterase-like effects of trans(−)δ8 and -δ9tetrahydrocannabinol as observed in the general motor activity of mice. Psychopharmacologia 27 (2): 111–6.
  17. Eubanks, Lisa M., et al. (2006). A Molecular Link Between the Active Component of Marijuana and Alzheimer's Disease Pathology. Molecular Pharmaceutics 3 (6): 773–7.
  18. Hoaken (2003). Drugs of abuse and the elicitation of human aggressive behavior. Addictive Behaviors 28: 1533–1554.
  19. PMID 21615727 (PMID 21615727)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  20. PMID 22063718 (PMID 22063718)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  21. (2004). Marijuana and cannabinoid regulation of brain reward circuits. British Journal of Pharmacology 143 (2): 227–34.
  22. Solinas, M., et al. (2007). Nicotinic 7 Receptors as a New Target for Treatment of Cannabis Abuse. Journal of Neuroscience 27 (21): 5615–20.
  23. (2002). Cannabinoid analgesia. Pharmacology & Therapeutics 95 (2): 127–35.
  24. Deaths from Marijuana v. 17 FDA-Approved Drugs. (PDF) URL accessed on 2011-02-03.
  25. Erowid Cannabis Vault : THC Material Safety Data Sheet. Erowid.org. URL accessed on 2011-04-20.
  26. (1970). Marihuana Chemistry. Science 168 (3936): 1159–1165.
  27. (1970). Chemical Basis of Hashish Activity. Science 169 (3945): 611–612.
  28. Cannabis and Cannabinoids – National Cancer Institute
  29. Haney M (2007). Dronabinol and marijuana in HIV-positive marijuana smokers. Caloric intake, mood, and sleep. Journal of Acquired Immune Deficiency Syndromes 45 (5): 545–54.
  30. Abrams DI, Hilton JF, Leiser RJ, Shade SB, Elbeik TA, Aweeka FT, Benowitz NL, Bredt BM, Kosel B, Aberg JA, Deeks SG, Mitchell TF, Mulligan K, Bacchetti P, McCune JM, Schambelan M. (2003). Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial. Annals of Internal Medicine 139 (4): 258–66.
  31. Grotenhermen, Franjo (2002). "Review of Therapeutic Effects" Cannabis and Cannabinoids: Pharmacology, Toxicology and Therapeutic Potential, New York City: Haworth Press.
  32. Marijuana (Cannabis). National Multiple Sclerosis Society. URL accessed on 2009-09-05.
  33. ClinicalTrials.gov NCT00965809
  34. Müller-Vahl, K. R., et al. (2002). Treatment of Tourette's Syndrome with Δ9-Tetrahydrocannabinol (THC): A Randomized Crossover Trial. Pharmacopsychiatry 35 (2): 57–61.
  35. Muller-Vahl, Kirsten R., et al. (2003). Delta 9-Tetrahydrocannabinol (THC) is Effective in the Treatment of Tics in Tourette Syndrome. The Journal of Clinical Psychiatry 64 (4): 459–65.
  36. Müller-Vahl, Kirsten R., et al. (2003). Treatment of Tourette Syndrome with Delta-9-Tetrahydrocannabinol (Δ9-THC): No Influence on Neuropsychological Performance. Neuropsychopharmacology 28 (2): 384–8.
  37. (1996). Cannabinoid receptor-mediated inhibition of dopamine release in the retina. Naunyn-Schmiedeberg's archives of pharmacology 354 (6): 791–5.
  38. Petro, DJ, Ellenberg C. (1981). Treatment of human spasticity with delta-9 tetrahydrocannabinol.. Journal of Clinical Pharmacology 36: 189–261.
  39. Clifford, DB (1983). Tetrahydrocannabinol for tremor in multiple sclerosis.. Annals of Neurology 13(6): 669–671.
  40. Hannigan, WC, Destree R, Truong XT. (1986). The effect of delta-9-THC on human spasticity. Clinical Pharmacology and Therapeutics 39: 198.
  41. HMaurer, M, Henn V, Dittrich A, Hofmann A. (1990). Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial.. European Archives of Psychiatry and Clinical Neuroscience. 240: 1–4.
  42. Ramirez, B. G., et al. (2005). Prevention of Alzheimer's Disease Pathology by Cannabinoids: Neuroprotection Mediated by Blockade of Microglial Activation. Journal of Neuroscience 25 (8): 1904–13.
  43. Eubanks, Lisa M., et al. (2006). A Molecular Link Between the Active Component of Marijuana and Alzheimer's Disease Pathology. Molecular Pharmaceutics 3 (6): 773–7.
  44. News Release
  45. Munson, AE, et al. (1975). Antineoplastic activity of cannabinoids. Journal of the National Cancer Institute 55 (3): 597–602.
  46. (2007). Δ9-Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo. Oncogene 27 (3): 339–46.
  47. Guzmán, M, et al. (2006). A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. British Journal of Cancer 95 (2): 197–203.
  48. Kemp, Stephen W.P. (2001). The effect of detla-9-tetrahydrocannabinol (THC) on lithium-induced sickness reactions in both rats (Rattus norvegicus) and the house musk shrew (Suncus murinus) (M.A. thesis) Wilfrid Laurier University
  49. Chan, P, et al. (1996). Toxicity and Carcinogenicity of Δ9-Tetrahydrocannabinol in Fischer Rats and B6C3F1 Mice. Fundamental and Applied Toxicology 30 (1): 109–17.
  50. (1998). Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proceedings of the National Academy of Sciences 95 (14): 8268–73.
  51. Steffens, Sabine, et al. (2005). Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 434 (7034): 782–6.
  52. Grant, Igor et al. (2003). Non-acute (residual) neurocognitive effects of cannabis use: A meta-analytic study. Journal of the International Neuropsychological Society 9 (5).
  53. Jiang, W., et al. (2005). Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. Journal of Clinical Investigation 115 (11): 3104–3116.
  54. (2005). Cannabinoids: Between Neuroprotection and Neurotoxicity. Current Drug Targets - CNS & Neurological Disorders 4 (6): 677–684.
  55. Correa, Fernando, et al. (2005). The Role of Cannabinoid System on Immune Modulation: Therapeutic Implications on CNS Inflammation. Mini Reviews in Medicinal Chemistry 5 (7): 671–675.
  56. Fernández-Ruiz, Javier, et al. (2007). Cannabinoid CB2 receptor: a new target for controlling neural cell survival?. Trends in Pharmacological Sciences 28 (1): 39–45.
  57. Pertwee, Roger G (2010). Cannabinoid Receptor Ligands. Tocris. URL accessed on 2011-04-20.
  58. Medical Marijuana
  59. (2009). Does cannabis use affect prospective memory in young adults?. Journal of Psychopharmacology 24 (2): 241–6.
  60. Indlekofer, F, et al. (2008). Reduced memory and attention performance in a population-based sample of young adults with a moderate lifetime use of cannabis, ecstasy and alcohol. Journal of Psychopharmacology 23 (5): 495–509.
  61. Block, R, et al. (2002). Effects of frequent marijuana use on memory-related regional cerebral blood flow. Pharmacology Biochemistry and Behavior 72: 237–50.
  62. Moore, Theresa HM, et al. (2007). Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. The Lancet 370 (9584): 319–28.
  63. Henquet, C., et al. (2005). Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people. BMJ 330 (7481): 11–0.
  64. Caspi, A, et al. (2005). Moderation of the Effect of Adolescent-Onset Cannabis Use on Adult Psychosis by a Functional Polymorphism in the Catechol-O-Methyltransferase Gene: Longitudinal Evidence of a Gene X Environment Interaction. Biological Psychiatry 57 (10): 1117–27.
  65. Zammit, S., et al. (2007). Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use. The British Journal of Psychiatry 191 (5): 402–7.
  66. (2008). Cannabis and Schizophrenia: new findings in an old debate. Neuropsychiatrie : Klinik, Diagnostik, Therapie und Rehabilitation : Organ der Gesellschaft Osterreichischer Nervenarzte und Psychiater 22 (4): 223–9.
  67. Degenhardt L, Hall W, Lynskey M (2001). Comorbidity between cannabis use and psychosis: Modelling some possible relationships (PDF), Sydney: National Drug and Alcohol Research Centre. URL accessed 2006-08-19.
  68. (2007). The neuropsychological correlates of cannabis use in schizophrenia: Lifetime abuse/dependence, frequency of use, and recency of use. Schizophrenia Research 96 (1–3): 169–184.
  69. Jayanthi, S, et al. (2008). Heavy marijuana users show increased serum apolipoprotein C-III levels: evidence from proteomic analyses. Molecular Psychiatry 15 (1): 101–112.
  70. Yucel, M., et al. (2008). Regional Brain Abnormalities Associated With Long-term Heavy Cannabis Use. Archives of General Psychiatry 65 (6): 694–701.
  71. (2006). Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain 129 (5): 1096–1112.
  72. Ellgren, Maria (9 February 2007). Neurobiological effects of early life cannabis exposure in relation to the gateway hypothesis (in English and Swedish).Template:Page needed
  73. (2006). Adolescent Cannabis Exposure Alters Opiate Intake and Opioid Limbic Neuronal Populations in Adult Rats. Neuropsychopharmacology 32 (3): 607–615.
  74. BBC News - Young cannabis smokers run risk of lower IQ, report claims
  75. (2004). Causal association between cannabis and psychosis: examination of the evidence. The British Journal of Psychiatry 184 (2): 110–117.
  76. (2009). Le cannabis est-il un facteur de vulnérabilité des troubles schizophrènes ?. Archives de Pédiatrie 16 (9): 1302–5.
  77. (2009). Drugs and violent death: comparative toxicology of homicide and non-substance toxicity suicide victims. Addiction 104 (6): 1000–1005.
  78. Price, C., et al. (2009). Cannabis and suicide: longitudinal study. The British Journal of Psychiatry 195 (6): 492–497.
  79. (1998). Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Letters 427 (2): 283–5.
  80. Marks, M. D., et al. (2009). Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. Journal of Experimental Botany 60 (13): 3715–26.
  81. Baker PB, Taylor BJ, Gough TA. (Jun 1981). The tetrahydrocannabinol and tetrahydrocannabinolic acid content of cannabis products. J Pharm Pharmacol. 33 (6): 369–72.
  82. Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I (March 2007). Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Science 80 (15): 1415–9.
  83. (2005). Pharmacokinetics and Metabolism of the Plant Cannabinoids, Δ9-Tetrahydrocannibinol, Cannabidiol and Cannabinol. Cannabinoids 168 (168): 657–90.
  84. Schwilke, E. W., et al. (2009). Δ9-Tetrahydrocannabinol (THC), 11-Hydroxy-THC, and 11-Nor-9-carboxy-THC Plasma Pharmacokinetics during and after Continuous High-Dose Oral THC. Clinical Chemistry 55 (12): 2180–2189.
  85. Röhrich, J, et al. (2010). Concentrations of Δ9-Tetrahydrocannabinol and 11-Nor-9-Carboxytetrahydrocannabinol in Blood and Urine After Passive Exposure to Cannabis Smoke in a Coffee Shop. Journal of Analytical Toxicology 34 (4): 196–203.
  86. (2011) Disposition of Toxic Drugs and Chemicals in Man, 9th, 1644–8, Seal Beach, CA: Biomedical Publications.
  87. List of psychotropic substances under international control. (PDF) URL accessed on 2011-04-20.Template:Page needed
  88. Marinol - the Legal Medical Use for the Marijuana Plant. Drug Enforcement Administration. URL accessed on 2011-04-20.
  89. Eustice, Carol Medicinal Marijuana: A Continuing Controversy. About.com. URL accessed on 2011-04-20.
  90. Sativex Oromucosal Spray. medicines.org.uk. URL accessed on 2012-02-01.
  91. ScienceDirect.com - Pharmacology & Therapeutics - Cannabinoid analgesia
  92. http://www.oregon.gov/Pharmacy/Imports/Marijuana/Public/DeathsFromMarijuanaV17FDAdrugs.pdf
  93. Pickens, JT (1981). Sedative activity of cannabis in relation to its delta'-trans-tetrahydrocannabinol and cannabidiol content. British Journal of Pharmacology 72 (4): 649–56.
  94. (2006). Cannabinoid Analgesia as a Potential New Therapeutic Option in the Treatment of Chronic Pain. Annals of Pharmacotherapy 40 (2): 251–260.
  95. MARINOL (dronabinol) capsule drug label/data at Daily Med from U.S. National Library of Medicine, National Institutes of Health.
  96. McKim, William A (2002). Drugs and Behavior: An Introduction to Behavioral Pharmacology, 5th, Prentice Hall.
  97. includeonly>Greenberg, Gary. "Respectable Reefer", Mother Jones, 2005-11-01. Retrieved on 8 April 2010.
  98. Government eases restrictions on pot derivative | Online Athens
  99. (1998). Abuse potential of dronabinol (Marinol). Journal of Psychoactive Drugs 30 (2): 187–96.Template:Better source
  100. Petition to Reschedule Cannabis (Marijuana). Coalition for Rescheduling Cannabis.Template:Better source
  101. WHO Expert Committee on Drug Dependence.

Further reading


External links


Cannabinoids edit

{Anandamide} {CBD} {CBDV} {CBN} {CBV} {CP 55,940} {HU-210} {Nabilone} {Rimonabant} {THC} {THCV} {WIN 55,212-2} {URB597}

Template:Cannabis Template:Drug use Template:Euphoriants


[edit]Psychedelic tryptamines

α,N,N-TMT, 2,N,N-TMT, 5,N,N-TMT, 4-Acetoxy-DMT 4-Acetoxy-DET, 4-Acetoxy-DIPT, 4-HO-5-MeO-DMT, α-ET, α-MT, Baeocystin, Bufotenin, DET, DIPT, DMT, DPT, EIPT, Ethocin, Ethocybin, Miprocin, Iprocin, MET, MIPT, 5-Me-MIPT 5-MeO-α-ET, 5-MeO-α-MT, 5-MeO-DALT, 5-MeO-DET, 5-MeO-DIPT, 5-MeO-DMT, 5-MeO-DPT, 5-MeO-MIPT, 5-MeO-2,N,N-TMT, Norbaeocystin, Psilocin, Psilocybin


.

Template:Antiemetics and antinauseants Template:Orexigenics Template:Ancient anaesthesia-footer

This page uses Creative Commons Licensed content from Wikipedia (view authors).