Psychology Wiki
Register
Advertisement

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Clinical: Approaches · Group therapy · Techniques · Types of problem · Areas of specialism · Taxonomies · Therapeutic issues · Modes of delivery · Model translation project · Personal experiences ·


Task analysis is the analysis of how a task is accomplished, including a detailed description of both manual and mental activities, task and element durations, task frequency, task allocation, task complexity, environmental conditions, necessary clothing and equipment, and any other unique factors involved in or required for one or more people to perform a given task. Task analysis emerged from research in applied behavior analysis and still has considerable research in that area.

Information from a task analysis can then be used for many purposes, such as personnel selection and training, tool or equipment design, procedure design (e.g., design of checklists or decision support systems) and automation.

The term "task" is often used interchangeably with activity or process. Task analysis often results in a hierarchical representation of what steps it takes to perform a task for which there is a goal and for which there is some lowest-level "action" that is performed. Task analysis is often performed by human factors professionals.

Task analysis may be of manual tasks, such as bricklaying, and be analyzed as time and motion studies using concepts from industrial engineering. Cognitive task analysis is applied to modern work environments such as supervisory control where little physical works occurs, but the tasks are more related to situation assessment, decision making, and response planning and execution.

Task analysis is also used in education. It is a model that is applied to classroom tasks to discover which curriculum components are well matched to the capabilities of students with learning disabilities and which task modification might be necessary. It discovers which tasks a person hasn't mastered, and the information processing demands of tasks that are easy or problematic. In behavior modification, it is a breakdown of a complex behavioral sequence into steps. This often serves as the basis for Chaining.

Task analysis: data collection[]

The analyst will often directly observe tasks performed by practitioners (as in ethnographic studies) and may audio-tape and videotape actual task performance. A more controlled study may be done in a laboratory, as in experimental psychology, where the practitioner may work with a simulation of the real task environment. An analysis of actual work procedures, manuals, etc. is also valuable.

Computational models of cognitive task performance[]

Task analysis versus Work Domain Analysis[]

If task analysis is likened to a set of instructions on how to navigate from point A to point B, then work domain analysis (WDA) is like having a map of the terrain that includes Point A and Point B (see Lintern, 2005). WDA is broader and focuses on the environmental constraints and opportunities for behavior, as in Gibsonian ecological psychology and ecological interface design.

Task analysis and documentation[]

Since the 1980s, a major change in technical documentation has been to emphasize the tasks performed with a system rather than documenting the system itself. (Hackos and Redish, 1998) In software documentation particularly, long printed technical manuals that exhaustively describe every function of the software are being replaced by online help organized into tasks. This is part of the new emphasis on usability and user-centered design rather than system/software/product design.

According to the historian of technical communication, R. John Brockmann, this task orientation in technical documentation began with publishing guidelines issued by IBM in the late 1980s. Later IBM studies led to John Carroll's theory of minimalism in the 1990s.

With the development of XML as a markup language suitable for both print and online documentation (replacing SGML with its focus on print), IBM developed the Darwin Information Typing Architecture XML standard in 2000. Now an OASIS standard, DITA has a strong emphasis on task analysis. Its three basic information types are Task, Concept, and Reference. Tasks are analyzed into steps, with a main goal of identifying steps that are reusable in multiple tasks.

See also[]

Further reading[]

  • Crandall, B., Klein, G., and Hoffman, R. (2006). Working minds: A practitioner's guide to cognitive task analysis, MIT Press.
  • Kirwan, B. and Ainsworth, L. (Eds.) (1992). A guide to task analysis, Taylor and Francis.
  • Hackos, JoAnn T. and Redish, Janice C. (1998). User and Task Analysis for Interface Design, Wiley.
  • Brockmann, R. John (1986). Writing Better Computer User Documentation - From Paper to Online, Wiley-Interscience.
  • Carroll, John M. (1990). The Nurnberg Funnel - Designing Minimalist Instruction for Practical Computer Skill, MIT.

External links[]

Categor:Analysis

Learning
Types of learning
Avoidance conditioning | Classical conditioning | Confidence-based learning | Discrimination learning | Emulation | Experiential learning | Escape conditioning | Incidental learning |Intentional learning | Latent learning | Maze learning | Mastery learning | Mnemonic learning | Nonassociative learning | Nonreversal shift learning | Nonsense syllable learning | Nonverbal learning | Observational learning | Omission training | Operant conditioning | Paired associate learning | Perceptual motor learning | Place conditioning | Probability learning | Rote learning | Reversal shift learning | Second-order conditioning | Sequential learning | Serial anticipation learning | Serial learning | Skill learning | Sidman avoidance conditioning | Social learning | Spatial learning | State dependent learning | Social learning theory | State-dependent learning | Trial and error learning | Verbal learning 
Concepts in learning theory
Chaining | Cognitive hypothesis testing | Conditioning | Conditioned responses | Conditioned stimulus | Conditioned suppression | Constant time delay | Counterconditioning | Covert conditioning | Counterconditioning | Delayed alternation | Delay reduction hypothesis | Discriminative response | Distributed practice |Extinction | Fast mapping | Gagné's hierarchy | Generalization (learning) | Generation effect (learning) | Habits | Habituation | Imitation (learning) | Implicit repetition | Interference (learning) | Interstimulus interval | Intermittent reinforcement | Latent inhibition | Learning schedules | Learning rate | Learning strategies | Massed practice | Modelling | Negative transfer | Overlearning | Practice | Premack principle | Preconditioning | Primacy effect | Primary reinforcement | Principles of learning | Prompting | Punishment | Recall (learning) | Recency effect | Recognition (learning) | Reconstruction (learning) | Reinforcement | Relearning | Rescorla-Wagner model | Response | Reinforcement | Secondary reinforcement | Sensitization | Serial position effect | Serial recall | Shaping | Stimulus | Reinforcement schedule | Spontaneous recovery | State dependent learning | Stimulus control | Stimulus generalization | Transfer of learning | Unconditioned responses | Unconditioned stimulus 
Animal learning
Cat learning | Dog learning  Rat learning 
Neuroanatomy of learning
Neurochemistry of learning
Adenylyl cyclase  
Learning in clinical settings
Applied Behavior Analysis | Behaviour therapy | Behaviour modification | Delay of gratification | CBT | Desensitization | Exposure Therapy | Exposure and response prevention | Flooding | Graded practice | Habituation | Learning disabilities | Reciprocal inhibition therapy | Systematic desensitization | Task analysis | Time out 
Learning in education
Adult learning | Cooperative learning | Constructionist learning | Experiential learning | Foreign language learning | Individualised instruction | Learning ability | Learning disabilities | Learning disorders | Learning Management | Learning styles | Learning theory (education) | Learning through play | School learning | Study habits 
Machine learning
Temporal difference learning | Q-learning 
Philosophical context of learning theory
Behaviourism | Connectionism | Constructivism | Functionalism | Logical positivism | Radical behaviourism 
Prominant workers in Learning Theory|-
Pavlov | Hull | Tolman | Skinner | Bandura | Thorndike | Skinner | Watson 
Miscellaneous|-
Category:Learning journals | Melioration theory 
edit


ko:과업 분석

Advertisement