Wikia

Psychology Wiki

Systolic pressure

Talk0
34,143pages on
this wiki

Redirected from Systolic blood pressure

File:Heart systole.svg
Systole QRS Complex

The parts of a QRS complex. Ventricular systole begins at the QRS.

Sysolic pressure or systolic blood pressure is the pressure in blood brought about by the contraction of the heart. Systolic pressure is peak pressure in the arteries, which occurs near the beginning of the cardiac cycle when the ventricles are contracting.

Systolic arterial blood pressures is not static but undergoes natural variations from one heartbeat to another and throughout the day (in a circadian rhythm). It also changes in response to stress, nutritional factors, drugs, disease, exercise, and momentarily from standing up. Sometimes the variations are large. Hypertension refers to arterial pressure being abnormally high, as opposed to hypotension, when it is abnormally low.

Systole (pronounced /ˈsɪstɒli/, rhymes with "fiscally") is the contraction of heart chambers, driving blood out of the chambers. The chamber most often discussed is the left ventricle. However, all four chambers of the heart undergo systole and diastole in a timed fashion so that blood is propelled forward through the cardiovascular system.

Types Edit

Electrical vs. mechanical Edit

Electrical systole is the electrical activity that stimulates the myocardium of the chambers of the heart to create an action potential to have the muscles contract. This is soon followed by Mechanical systole, which is the mechanical contraction that forces blood through the heart.

Atrial Edit

Atrial systole is the contraction of the myocardium of the left and right atria. Electrical systole of the atria begins with the onset of the P wave on the ECG.

Atrial systole, which normally occurs in the late portion of ventricular diastole, causes increased pressure in the atrium and added blood flow into the ventricles. This added blood flow is known as atrial kick, and is absent if there is loss of normal electrical conduction in the heart, such as during atrial fibrillation, atrial flutter, and complete heart block. Aortic and pulmonary valves are closed. Mitral and tricuspid valves are open due to the increased pressure in the atria.

VentricularEdit

Ventricular systole is the contraction of the myocardium of the left and right ventricles. Electrical systole of the ventricles begins at the beginning of the QRS complex on the ECG.

At the beginning of ventricular systole, the pressure in the left ventricle increases. This soon eclipses the pressure in the left atrium, closing the mitral valve. The pressure in the left ventricle continues to rise, until the pressure in the ventricle is greater than the pressure in the aorta. This causes the aortic valve to open, allowing the blood to eject into the aorta, to perfuse the end organs of the body.

Physiological mechanism Edit

Systole (or contraction of the heart) is initiated by the electrical cells of the sinoatrial node, which is the heart's natural pacemaker. These cells are activated spontaneously by depolarization of their membranes beyond a certain threshold for excitation. At this point, voltage-gated calcium channels on the cell membrane open and allow calcium ions to pass through, into the sarcoplasm, or interior, of the muscle cell. Some calcium ions bind to receptors on the sarcoplasmic reticulum causing an influx of calcium ions into the sarcoplasm. The calcium ions bind to the troponin, causing a conformation change, breaking the bond between the protein tropomyosin, to which the troponin is attached, and the myosin binding sites. This allows the myosin heads to bind to the myosin binding sites on the actin protein filament and contraction results as the myosin heads draw the actin filaments along, are bound by ATP, causing them to release the actin, and return to their original position, breaking down the ATP into ADP and a phosphate group.

The action potential spreads via the passage of sodium ions through the gap junctions that connect the sarcoplasm of adjacent myocardial cells. This spread of action potentials only occurs in the atria, as the ventricles do not have gap junctions.

The ventricles contract due to different cells, the atrioventricular node. This node does not conduct its own action potential but receives it from the cells of the atrium. The atrioventricular node passes this potential around the ventricle through the bundle of His and then the purkinje fibers which cause the ventricle to contract.

Norepinephrine (noradrenaline) is released by the terminal boutons of depolarized sympathetic fibres, at the sinoatrial and atrioventricular nodes.

Norepinephrine diffuses across the synaptic cleft binds to the β1-adrenoreceptorsG-protein linked receptors, consisting of seven transmembrane domains – shifting their equilibrium towards the active state. The receptor changes its conformation and mechanically activates the G-protein which is released. The G-protein is involved in the production of cyclic adenyl monophosphate (cAMP) from adenyl triphosphate (ATP) and this in turn activates the protein kinase (β-adrenoreceptor kinase). β-adrenoreceptor kinase phosphorylates the calcium ion channels in the sarcolemma, so that calcium ion influx is increased when they are activated by the appropriate transmembrane voltage. This will of course, cause more of the calcium receptors in the sarcoplasmic reticulum to be activated, creating a larger flow of calcium ions into the sarcoplasm. More troponin will be bound and more myosin binding sites cleared of tropomyosin so that more myosin heads can be recruited for the contraction and a greater force and speed of contraction results.

(Phosphodiesterase catalyses the decomposition of cAMP to AMP so that it is no longer able to activate the protein kinase. AMP will of course, go on to be phosphorylated to ATP and may be recycled.)

Noradrenaline also affects the atrioventricular node, reducing the delay before continuing conduction of the action potential via the bundle of His.

Time definition of SystoleEdit

Time variables of systole may be split left and right. The left heart time variable of systole is Aortic Valve open to Aortic Valve close. The right heart time variable of systole is Pulmonic Valve open to Pulmonic valve close. Both are readily adapted to the Wiggers diagram.

See alsoEdit

External linksEdit

This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki