Wikia

Psychology Wiki

Superior longitudinal fasciculus

Talk0
34,136pages on
this wiki
Revision as of 23:02, April 1, 2009 by Dr Joe Kiff (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


Brain: Superior longitudinal fasciculus
Gray751
Diagram showing principal systems of association fibers in the cerebrum. (Sup. longitudinal fasc. labeled at center top.)
[[Image:|250px|center|]]
Latin fasciculus longitudinalis superior cerebri
Gray's subject #189 844
Part of
Components
Artery
Vein
BrainInfo/UW ancil-537
MeSH [1]

The superior longitudinal fasciculus (also called the superior longitudinal fascicle or SLF) is a pair of long bi-directional bundles of neurons connecting the front and the back of the cerebrum. Each association fiber bundle is lateral to the centrum ovale of a cerebral hemisphere and connects the frontal, occipital, parietal, and temporal lobes. The neurons pass from the frontal lobe through the operculum to the posterior end of the lateral sulcus where numerous neurons radiate into the occipital lobe and other neurons turn downward and forward around the putamen and radiate to anterior portions of the temporal lobe.

AnatomyEdit

The SLF is composed of four distinct components[1] SLF I, SLF II, SLF III, and arcuate fascicle (AF). In humans, these four components are bundled together although they are functionally separate. In non-human primates, the SLF and AF are anatomically separate and have separate trajectories.

SLF IEdit

SLF I is the dorsal component and originates in the superior and medial parietal cortex, passes around the cingulate sulcus and in the superior parietal and frontal white matter, and terminates in the dorsal and medial cortex of the frontal lobe (Brodmann 6, 8, and 9) and in the supplementary motor cortex (M II). [2]

SLF IIEdit

SLF II is the major component of SLF and originates in the caudal-inferior parietal cortex and terminates in the dorsolateral prefrontal cortex (Brodmann 6, 8 and 46).

SLF IIIEdit

SLF III is the ventral component and originates in the supramarginal gyrus (rostral portion of the inferior parietal lobe) and terminates in the ventral premotor and prefrontal cortex (Brodmann 6, 44, and 46).

AFEdit

The AF originates in the caudal area of the superior temporal gyrus and passes next to the neurons of SLF II above the Sylvian fissure and insula in non-human primates. In humans, neurons that originate from the caudal superior temporal gyrus and the superior temporal sulcus pass around the caudal Sylvian fissure and along with the SLF bundle and terminate in the dorsal prefrontal cortex (Brodmann areas 8 and 46).

FunctionsEdit

SLF IEdit

SLF I connects to the superior parietal cortex which encodes locations of body parts in a body-centric coordinate system and with M II and dorsal premotor cortex.[3] This suggests the SLF I is involved with regulating motor behavior, especially conditional associative tasks which select among competing motor tasks based on conditional rules.

SLF IIEdit

SLF II connects to the caudal inferior parietal cortex which controls spatial attention and visual and oculomotor functions. This suggest the SLF II provides the prefrontal cortex with parietal cortex information regarding perception of visual space. Since these bundles are bi-directional, working memory (Brodmann 46) in the prefrontal cortex may provide the parietal cortex with information to focus spatial attention and regulate selection and retrieval of spatial information.

SLF IIIEdit

SLF III connects the rostral inferior parietal cortex which receives information from the ventral precentral gyrus. This suggests that the SLF III transfers somasensory information, such as language articulation, between the ventral premotor cortex, Brodmann 44 (pars opercularis), the supramarginal gyrus (Brodmann 40), and the laterial inferior prefrontal cortex working memory (Brodmann 46).

AFEdit

The arcuate fascicle connects the superior temporal gyrus (Tpt) with the dorsal prefrontal cortex which suggests auditory information is transmitted between those two areas of cortex.[4]

External linksEdit

ReferencesEdit

  1. Makris pages 1-2
  2. Makris page 11
  3. Makris page 13
  4. Makris page 14
Telencephalon (cerebrum, cerebral cortex, cerebral hemispheres) - edit

primary sulci/fissures: medial longitudinal, lateral, central, parietoöccipital, calcarine, cingulate

frontal lobe: precentral gyrus (primary motor cortex, 4), precentral sulcus, superior frontal gyrus (6, 8), middle frontal gyrus (46), inferior frontal gyrus (Broca's area, 44-pars opercularis, 45-pars triangularis), prefrontal cortex (orbitofrontal cortex, 9, 10, 11, 12, 47)

parietal lobe: postcentral sulcus, postcentral gyrus (1, 2, 3, 43), superior parietal lobule (5), inferior parietal lobule (39-angular gyrus, 40), precuneus (7), intraparietal sulcus

occipital lobe: primary visual cortex (17), cuneus, lingual gyrus, 18, 19 (18 and 19 span whole lobe)

temporal lobe: transverse temporal gyrus (41-42-primary auditory cortex), superior temporal gyrus (38, 22-Wernicke's area), middle temporal gyrus (21), inferior temporal gyrus (20), fusiform gyrus (36, 37)

limbic lobe/fornicate gyrus: cingulate cortex/cingulate gyrus, anterior cingulate (24, 32, 33), posterior cingulate (23, 31),
isthmus (26, 29, 30), parahippocampal gyrus (piriform cortex, 25, 27, 35), entorhinal cortex (28, 34)

subcortical/insular cortex: rhinencephalon, olfactory bulb, corpus callosum, lateral ventricles, septum pellucidum, ependyma, internal capsule, corona radiata, external capsule

hippocampal formation: dentate gyrus, hippocampus, subiculum

basal ganglia: striatum (caudate nucleus, putamen), lentiform nucleus (putamen, globus pallidus), claustrum, extreme capsule, amygdala, nucleus accumbens

Some categorizations are approximations, and some Brodmann areas span gyri.

This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki