Wikia

Psychology Wiki

Sliding filament mechanism

Talk0
34,143pages on
this wiki
Revision as of 00:07, December 22, 2008 by Dr Joe Kiff (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


The sliding filament theory describes a process used by muscles to contract.

Process of movement

File:Sarcomere.svg

Myosin is a molecular motor that acts like an active ratchet. Chains of actin proteins form high tensile passive 'thin' filaments that transmit the force generated by myosin to the ends of the muscle. Myosin also forms 'thick' filaments. Each myosin 'paddles' along an actin filament repeatedly binding, ratcheting and letting go, sliding the thick filament over thin filament.

  1. Myosin heads bind to the passive actin filaments at the myosin binding sites.
  2. Upon strong binding, myosin and actin undergo an isomerization (myosin rotates at the myosin-actin interface) extending an extensible region in the neck of the myosin head.
  3. Shortening occurs when the extensible region pulls the filaments across each other (like the shortening of a spring). Myosin remains attached to the actin.
  4. The binding of ATP allows myosin to detach from actin. While detached, ATP hydrolysis occurs "recharging" the myosin head. If the actin binding sites are still available, myosin can bind actin again.
  5. The collective bending of numerous myosin heads (all in the same direction), combine to move the actin filament relative to the myosin filament. This results in muscle contraction.

All muscle cells are composed of a number of actin and myosin filaments in series. The basic unit of organisation of these contractile proteins in striated muscle cells (i.e., the cells that compose cardiac and skeletal muscle, but not in smooth muscle tissue) is called the sarcomere. It consists of a central bidirectional thick filament flanked by two actin filaments, orientated in opposite directions. When each end of the myosin thick filament ratchets along the actin filament with which it overlaps, the two actin filaments are drawn closer together. Thus, the ends of the sarcomere are drawn in and the sarcomere shortens. Sarcomeres are connected together by so-called 'Z lines', which anchor the ends of actin filaments in such a way that the filaments on each side of the Z line point in opposite directions. By this means, sarcomeres are arranged in series. When a muscle fiber contracts, all sarcomeres contract simultaneously so that force is transmitted to the fiber ends.

Pre-process of movement

If the process of movement were to continue constantly, all muscles would constantly be contracted. Therefore, the body needs a way to control the ability of myosin to bind to the actin. This is accomplished by the introduction of calcium into the cytoplasm of the muscle cell.

  1. When the muscle does not need to contract (is in a resting state), thin strands of a protein called tropomyosin are wrapped around the actin filaments, blocking the myosin binding sites. This inhibits the myosin from binding to actin, and therefore causing a chain of events leading to muscle contraction.
  2. Molecules called troponin are attached to the tropomyosin.
  3. When calcium is introduced into the muscle cell (fiber), calcium ions bind to troponin molecules.
  4. Calcium binding changes the shape of troponin, causing tropomyosin to be moved deeper into the groove of the actin dimer, therefore causing the myosin binding sites on the actin to be exposed.
  5. Myosin binds to the now-exposed binding sites, and muscles contract via the sliding-filament mechanism.

Nerve impulses affect the way in which calcium bonds to the troponin.

External links


This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki