Wikia

Psychology Wiki

Sensitization

Talk0
34,142pages on
this wiki
Revision as of 15:55, April 8, 2010 by Jaywin (Talk | contribs)

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


Sensitization is an example of nonassociative learning in which the progressive amplification of a response follows repeated administrations of a stimulus (Bell et al., 1995).

Types of sensitization

For example, electrical or chemical stimulation of the rat hippocampus causes strengthening of synaptic signals, a process known as long-term potentiation or LTP (Collingridge, Isaac & Wang, 2005). LTP is thought to underlie memory and learning in the human brain.

A different type of sensitization is that of kindling, where repeated stimulation of hippocampal or amygdaloid neurons eventually leads to seizures. Thus, kindling has been suggested as a model for temporal lobe epilepsy (Morimoto, Fahnestock & Racine, 2004).

A third type is central sensitization, where nociceptive neurons in the dorsal horns of the spinal cord become sensitized by peripheral tissue damage or inflammation (Ji et al., 2003). These various types indicate that sensitization may underlie both pathological and adaptive functions in the organism, but whether they also share the same physiological and molecular properties is not yet established (McEarchern & Shaw, 1999).

Sensitization is a term referred to in psychology as how your body reacts to a drug.

Etiology

Sensitization has been implied as a causal or maintaining mechanism in a wide range of apparently unrelated pathologies including substance abuse and dependence, allergies, asthma, and some medically unexplained syndromes such as fibromyalgia and multiple chemical sensitivity. Sensitization has also been suggested in relation to psychological disorders such as post-traumatic stress disorder, panic anxiety and mood disorders (Rosen & Schulkin, 1998; Antelman, 1988; Post, 1992).

Experimental basis

Eric Kandel was one of the first to describe sensitization based on his experiments with the seasnail Aplysia in the 1960's and 1970's. Kandel and his colleagues gave Aplysia electric shocks to the head, which caused it to retract its siphon and gills (Kandel, 2004). Eventually, very little stimulation was needed to provoke the response, indicating that Aplysia had been sensitized. When tested several days after the initial trials, this response was still manifest. In 2000, Eric Kandel was awarded the Nobel Prize in Physiology or Medicine for his research in neuronal learning processes.

Edit: Kandel used Aplysia to measure habituation in the gill-withdrawal reflex, NOT sensitization.

See also

References

  • Antelman, S.M. (1988). Time-dependent sensitization as the cornerstone for a new approach to pharmacotherapy: drugs as foreign/stressful stimuli. Drug Development Research, 14, 1-30.
  • Bell, I.R., Hardin, E.E., Baldwin, C.M., & Schwartz, G.E. (1995). Increased limbic system symptomatology and sensitizability of young adults with chemical and noise sensitivities. Environmental Research, 70, 84-97.
  • Collingridge, G.L., Isaac, J.T.R., & Wang, Y.T. (2004). Receptor trafficking and synaptic plasticity. Nature Reviews, 5, 952-962.
  • Ji, R., Kohno, T., Moore, K.A. & Woolf, C.J. (2003). Central sensitization and LTP: do pain and memory share similar mechanisms? Trends in Neurosciences, 26, 696-705. Full text
  • Kandel, E.R. (2004). The molecular biology of memory storage: a dialog between genes and synapses. Bioscience Reports, 24, 477-522. Full text
  • Morimoto, K., Fahnestock, M. & Racine, R.J. (2004). Kindling and status epilepticus models of epilepsy: rewiring the brain. Progress in Neurobiology, 73, 1-60.
  • Rosen, J.B. & Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review, 105, 325-350.

Further reading

  • Antzoulatos, E.G., Wainwright, M.L., Cleary, L.J., & Byrne, J.H. (2006). Long-term sensitization training primes Aplysia for further learning. Learning & Memory, 13, 422-425. Full text
  • Barbas, D., DesGroseillers, L., Castellucci, V.F., Carew, T.J., & Marinesco, S. (2003). Multiple Serotonergic Mechanisms Contributing to Sensitization in Aplysia: Evidence of Diverse Serotonin Receptor Subtypes. Learning & Memory, 10, 373 - 386. Full text
  • Burrell, B.D. & Sahley, C.L. (1998). Generalization of Habituation and Intrinsic Sensitization in the Leech. Learning & Memory, 5, 405 - 419. Full text
  • Burrell, B.D. & Sahley, C.L. (1999). Serotonin Depletion Does Not Prevent Intrinsic Sensitization in the Leech. Learning & Memory, 6, 509 - 520. Full text
  • Hawkins, R.D., Cohen, T.E., & Kandel, E.R. (2006). Dishabituation in Aplysia can involve either reversal of habituation or superimposed sensitization. Learning & Memory, 13, 397-403. Full text
  • Kaplan, P.S., Goldstein, M.H., Huckeby, E.R., & Cooper, R.P. (1995). Habituation, sensitization, and infants' responses to motherese speech. Developmental Psychobiology, 28, 45-57. Full text
  • McSweeney, F.K., Hinson, J.M, & Cannon, C.B. (1996). Sensitization-habituation may occur during operant conditioning. Psychological Bulletin, 120, 256-271. Full text
  • Philips, G.T., Tzvetkova, E.I., Marinesco, S., & Carew, T.J. (2006). Latent memory for sensitization in Aplysia. Learning & Memory, 13, 224 - 229. Full text
  • Shum, F.W.F., et. al. (2007). Alteration of cingulate long-term plasticity and behavioral sensitization to inflammation by environmental enrichment. Learning & Memory, 14, 304 - 312. Abstract
  • Sutton, M.A., Ide, J., Masters, S.E., & Carew, T.J. (2002). Interaction between Amount and Pattern of Training in the Induction of Intermediate- and Long-Term Memory for Sensitization in Aplysia. Learning & Memory, 9, 29 - 40. Full text


Learning
Types of learning
Avoidance conditioning | Classical conditioning | Confidence-based learning | Discrimination learning | Emulation | Experiential learning | Escape conditioning | Incidental learning |Intentional learning | Latent learning | Maze learning | Mastery learning | Mnemonic learning | Nonassociative learning | Nonreversal shift learning | Nonsense syllable learning | Nonverbal learning | Observational learning | Omission training | Operant conditioning | Paired associate learning | Perceptual motor learning | Place conditioning | Probability learning | Rote learning | Reversal shift learning | Second-order conditioning | Sequential learning | Serial anticipation learning | Serial learning | Skill learning | Sidman avoidance conditioning | Social learning | Spatial learning | State dependent learning | Social learning theory | State-dependent learning | Trial and error learning | Verbal learning 
Concepts in learning theory
Chaining | Cognitive hypothesis testing | Conditioning | Conditioned responses | Conditioned stimulus | Conditioned suppression | Constant time delay | Counterconditioning | Covert conditioning | Counterconditioning | Delayed alternation | Delay reduction hypothesis | Discriminative response | Distributed practice |Extinction | Fast mapping | Gagné's hierarchy | Generalization (learning) | Generation effect (learning) | Habits | Habituation | Imitation (learning) | Implicit repetition | Interference (learning) | Interstimulus interval | Intermittent reinforcement | Latent inhibition | Learning schedules | Learning rate | Learning strategies | Massed practice | Modelling | Negative transfer | Overlearning | Practice | Premack principle | Preconditioning | Primacy effect | Primary reinforcement | Principles of learning | Prompting | Punishment | Recall (learning) | Recency effect | Recognition (learning) | Reconstruction (learning) | Reinforcement | Relearning | Rescorla-Wagner model | Response | Reinforcement | Secondary reinforcement | Sensitization | Serial position effect | Serial recall | Shaping | Stimulus | Reinforcement schedule | Spontaneous recovery | State dependent learning | Stimulus control | Stimulus generalization | Transfer of learning | Unconditioned responses | Unconditioned stimulus 
Animal learning
Cat learning | Dog learning  Rat learning 
Neuroanatomy of learning
Neurochemistry of learning
Adenylyl cyclase  
Learning in clinical settings
Applied Behavior Analysis | Behaviour therapy | Behaviour modification | Delay of gratification | CBT | Desensitization | Exposure Therapy | Exposure and response prevention | Flooding | Graded practice | Habituation | Learning disabilities | Reciprocal inhibition therapy | Systematic desensitization | Task analysis | Time out 
Learning in education
Adult learning | Cooperative learning | Constructionist learning | Experiential learning | Foreign language learning | Individualised instruction | Learning ability | Learning disabilities | Learning disorders | Learning Management | Learning styles | Learning theory (education) | Learning through play | School learning | Study habits 
Machine learning
Temporal difference learning | Q-learning 
Philosophical context of learning theory
Behaviourism | Connectionism | Constructivism | Functionalism | Logical positivism | Radical behaviourism 
Prominant workers in Learning Theory|-
Pavlov | Hull | Tolman | Skinner | Bandura | Thorndike | Skinner | Watson 
Miscellaneous|-
Category:Learning journals | Melioration theory 
edit


This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki