Wikia

Psychology Wiki

Saliva

Talk0
34,141pages on
this wiki
Revision as of 14:19, November 3, 2013 by Dr Joe Kiff (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


This article needs rewriting to enhance its relevance to psychologists..
Please help to improve this page yourself if you can..
File:The taking of a saliva sample.jpg

Saliva (also referred to as spit , spittle or slobber) is the watery and usually frothy substance produced in the mouths of humans and most other animals in the process of salivation. Saliva is produced in and secreted from the salivary glands. Human saliva is composed of 98% water, while the other 2% consists of other compounds such as electrolytes, mucus, antibacterial compounds, and various enzymes.[1] As part of the initial process of food digestion, the enzymes in the saliva break down some of the starch and fat in the food at the molecular level. Saliva also breaks down food caught in the teeth, protecting them from bacteria that cause decay. Furthermore, saliva lubricates and protects the teeth, the tongue, and the tender tissues inside the mouth. Saliva also plays an important role in tasting food by trapping thiols produced from odourless food compounds by anaerobic bacteria living in the mouth.[2]

Various species have evolved special uses for saliva that go beyond predigestion. Some swifts use their gummy saliva to build their nests. Some Aerodramus swiftlet nests are made only from saliva and used to make bird's nest soup.[3] Cobras, vipers, and certain other members of the venom clade hunt with venomous saliva injected by fangs. Some arthropods, such as spiders and caterpillars, create thread from salivary glands.

ContentsEdit

Produced in salivary glands, human saliva is 98% water, but it contains many important substances, including electrolytes, mucus, antibacterial compounds and various enzymes.[1]

It is a fluid containing:

Different reagents used to determine the content of saliva \1. Molisch test gives a positive result of purple color that is costituent to the presence of carbohydrates

See alsoEdit

NotesEdit

  1. 1.0 1.1 Physiology at MCG 6/6ch4/s6ch4_6
  2. Christian Starkenmann, Benedicte Le Calvé, Yvan Niclass, Isabelle Cayeux, Sabine Beccucci, and Myriam Troccaz. Olfactory Perception of Cysteine−S-Conjugates from Fruits and Vegetables. J. Agric. Food Chem., 2008; 56 (20): 9575-9580 DOI: 10.1021/jf801873h
  3. Marcone, M. F. (2005). "Characterization of the edible bird's nest the Caviar of the East." Food Research International 38:1125–1134. doi:10.1016/j.foodres.2005.02.008 Abstract retrieved 12 Nov 2007
  4. 4.0 4.1 4.2 4.3 Page 928 in: Walter F., PhD. Boron (2003). Medical Physiology: A Cellular And Molecular Approaoch, 1300, Elsevier/Saunders.

ReferencesEdit

  • Venturi S, Venturi M. (2009). Iodine in evolution of salivary glands and in oral health. Nutrition and Health. 20 :119–134. PMID: 19835108
  • Bahar, G., Feinmesser, R., Shpitzer, T., Popovtzer, A. and Nagler, R.M. (2007). Salivary analysis in oral cancer patients: DNA and protein oxidation, reactive nitrogen species, and antioxidant profile. Cancer, 109, 54–9.
  • Banerjee, R.K., Bose, A.K., Chakraborty, T.K., de, S.K. and Datta, A.G. (1985). Peroxidase-catalysed iodotyrosine formation in dispersed cells of mouse extrathyroidal tissues. J Endocrinol. 2, 159–65.
  • Banerjee, R.K. and datta, A.G. (1986). Salivary peroxidases. Mol Cell Biochem, 70, 21-9.
  • Bartelstone, H. J. (1951). Radioiodine penetration through intact enamel with uptake by bloodstream and thyroid gland. J Dent Res. 5 :728–33.
  • Bartelstone, H.J., Mandel, I.D., Oshry, E. and Seidlin, S.M. (1947). Use of radioactive iodine as a tracer in the Study of the Physiology of teeth. Science. 106, 132.

External linksEdit


This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki