Psychology Wiki
(New page: {{existswp}})
 
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{existswp}}
+
{{BioPsy}}
  +
{{PsyPerspective}}
  +
This is a background article for other aspects see [[respiration]]
  +
  +
  +
In human and [[animal physiology]], '''respiration''' is the transport of [[oxygen]] from the ambient air to the [[tissue]] cells and the transport of [[carbon dioxide]] in the opposite direction. This is in contrast to the [[Biochemistry|biochemical]] definition of respiration, which refers to '''[[cellular respiration]]''': the metabolic process by which an [[organism]] obtains energy by reacting [[oxygen]] with [[glucose]] to give [[water]], [[carbon dioxide]] and [[Adenosine triphosphate|ATP]] (energy). Although physiologic respiration is necessary to sustain [[cellular respiration]] and thus life in animals, the processes are distinct: cellular respiration takes place in individual cells of the animal, while physiologic respiration concerns the [[bulk flow]] and transport of metabolites between the organism and external environment.
  +
  +
In [[unicellular]] organisms, simple [[diffusion]] is sufficient for gas exchange: every cell is constantly bathed in the external environment, with only a short distance for gases to flow across. In contrast, complex multicellular organisms such as [[humans]] have a much greater distance between the environment and their innermost cells, thus, a [[respiratory system]] is needed for effective gas exchange. The respiratory system works in concert with a [[circulatory system]] to carry gases to and from the tissues.
  +
  +
In air-breathing [[vertebrates]] such as humans, respiration of oxygen includes four stages:
  +
*'''Ventilation''' from the ambient air into the [[alveoli]] of the [[lung]].
  +
*'''Pulmonary gas exchange''' from the alveoli into the pulmonary capillaries.
  +
*'''Gas transport''' from the pulmonary capillaries through the circulation to the peripheral capillaries in the organs.
  +
*'''Peripheral gas exchange''' from the tissue capillaries into the cells and [[mitochondria]].
  +
  +
Note that ventilation and gas transport require energy to power mechanical pumps (the [[Thoracic diaphragm|diaphragm]] and [[heart]] respectively), in contrast to the passive diffusion taking place in the gas exchange steps.
  +
  +
[[Respiratory physiology]] is the branch of [[human physiology]] concerned with respiration.
  +
  +
Respiration, the biological function ot the [[respiratory system]], by which the organism absorbs [[oxygen]] and disposes of [[carbon dioxide]]. See the following subjects :
  +
  +
==Control of respiration==
  +
'''Control of ventilation''' (''control of respiration'') refers to the [[physiology|physiological]] mechanisms involved in the control of [[ventilation (physiology)|physiologic ventilation]]. Gas exchange primarily controls the rate of respiration.
  +
  +
The most important function of [[breath]]ing is gas exchange (of [[oxygen]] and [[carbon dioxide]]). Thus the control of respiration is centered primarily on how well this is achieved by the [[lungs]].
  +
  +
== Control Unit ==
  +
  +
The control unit of ventilation consists of a processor (the breathing centre in the [[brain]]) which integrates inputs (emotional, chemical and physical stimuli) and controls an effector (the [[lungs]]) via [[motor nerves]] arising from the [[spinal cord]]. In humans, quiet breathing occurs by the cyclical contraction of the inspiratory muscles, particularly the [[Diaphragm (anatomy)|diaphragm]]. [[Inhalation]] is normally an active process, and [[exhalation]] is passive. However, when ventilation is increased (over 40 litres per minute), such as during heavy [[exercise]], muscle activity becomes involved in exhalation. Under these circumstances, the work of breathing over time can exceed the metabolic rate of the rest of the body.
  +
  +
== Ventilatory Pattern ==
  +
  +
The pattern neuronal firing when breathing can be divided into inspiratory and expiratory phases. Inspiration shows a sudden ramp increase in motor discharge to the inspiratory muscles (including pharyngeal dilator muscles). Before the end of inspiration, there is a decline in motor discharge. Exhalation is usually silent, except at high [[minute ventilation]] rates.
  +
  +
The mechanism of generation of the ventilatory pattern is not completely understood, but involves the integration of neural signals by respiratory control centres in the [[medulla]] and [[pons]]. The nuclei known to be involved are divided into regions known as the following:
  +
* medulla ([[reticular formation]])
  +
** [[ventral respiratory group]] ([[nucleus retroambigualis]], [[nucleus ambiguus]], [[nucleus parambigualis]] and the [[pre-Botzinger complex]]). The ventral respiratory group controls voluntary forced exhalation and acts to increase the force of inspiration.
  +
** [[dorsal respiratory group]] ([[nucleus tractus solitarius]]). The dorsal respiratory group controls mostly inspiratory movements and their timing.
  +
* pons
  +
** [[pneumotaxic center]].
  +
• Coordinates transition between inhalation and exhalation
  +
• Sends inhibitory impulses to the inspiratory area
  +
• The pneumotaxic center is involved in fine tuning of respiration rate.
  +
* [[apneustic center]]
  +
• Coordinates transition between inhalation and exhalation
  +
• Sends stimulatory impulses to the inspiratory area – activates and prolongs inhalation (long deep breaths)
  +
• Pnemotaxic control overrides signals from the apneustic area to end inspiration
  +
There is further integration in the [[anterior horn]] cells of the [[spinal cord]].
  +
  +
  +
Ventilation is normally controlled by the [[autonomic nervous system]], with only limited voluntary override. An exception to this is [[Ondine's curse]], where autonomic control is lost.
  +
  +
== Determinants of Ventilatory Rate ==
  +
  +
Ventilatory rate (minute volume) is tightly controlled and determined primarily by blood levels of [[carbon dioxide]] as determined by [[metabolic rate]]. Blood levels of [[oxygen]] become important in [[Hypoxia (medical)|hypoxia]]. These levels are sensed by [[chemoreceptor]]s in the [[medulla oblongata]] for pH, and the [[carotid body|carotid]] and [[aortic body|aortic]] bodies for oxygen and carbon dioxide. Afferent neurons from the carotid bodies and aortic bodies are via the [[glossopharyngeal nerve]] (CN IX) and the [[vagus nerve]] (CN X), respectively.
  +
  +
Levels of CO<sub>2</sub> rise in the blood when the metabolic use of O<sub>2</sub> is increased beyond the capacity of the lungs to expel CO<sub>2</sub>. CO<sub>2</sub> is stored largely in the blood as bicarbonate (HCO<sub>3</sub><sup>-</sup>) ions, by conversion first to carbonic acid (H<sub>2</sub>CO<sub>3</sub>), by the enzyme carbonic anhydrase, and then by disassociation of this acid to H<sup>+</sup> and HCO<sub>3</sub><sup>-</sup>. Build-up of CO<sub>2</sub> therefore causes an equivalent build-up of the disassociated hydrogen ion, which, by definition, decreases the pH of the blood.
  +
  +
During moderate [[exercise]], ventilation increases in proportion to [[metabolism|metabolic]] production of carbon dioxide. During strenuous exercise, ventilation increases more than needed to compensate for carbon dioxide production. [[Lactic acid]] produced during [[anaerobic metabolism]] lowers [[pH]] and thus increases breathing. In [[aerobic metabolism]], one molecule of acid (CO<sub>2</sub>) is produced in order to produce 6 molecules of the energy carrier [[Adenosine triphosphate|ATP]], whereas in anaerobic metabolism, 6 molecules of lactic acid are produced to provide the same amount of energy.
  +
  +
Mechanical stimulation of the lungs can trigger certain reflexes as discovered in animal studies. In humans, these seem to be more important in neonates and ventilated patients, but of little relevance in health. The tone of respiratory muscle is believed to be modulated by [[muscle spindle]]s via a reflex arc involving the spinal cord.
  +
  +
Drugs for example [[respiration stimulating drugs]] can greatly influence the control of respiration. [[Opioids]] and anaesthetic drugs tend to depress ventilation, especially with regards to [[Carbon Dioxide]] response. Stimulants such as [[Amphetamines]] can cause [[hyperventilation]].
  +
  +
[[Pregnancy]] tends to increase ventilation (lowering plasma carbon dioxide tension below normal values). This is due to increased [[progesterone]] levels and results in enhanced gas exchange in the [[placenta]].
  +
Ventilation is temporarily modified by voluntary acts and complex reflexes such as sneezing, coughing and vomiting.
  +
  +
== Feedback control ==
  +
[[sensory receptor|Receptor]]s play important roles in the regulation of respiration; central and peripheral [[chemoreceptor]]s, and [[mechanoreceptor]]s.
  +
  +
* '''[[Central chemoreceptors]]''' of the central nervous system, located on the ventrolateral medullary surface, are sensitive to the [[pH]] of their environment<ref name="Coates"> Coates EL, Li A, Nattie EE. Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol. 75(1):5-14, 1984. </ref> <ref name="Cordovez"> Cordovez JM, Clausen C, Moore LC, Solomon, IC. A mathematical model of pH(i) regulation in central CO<sub>2</sub> chemoreception. Adv Exp Med Biol. 605:306-11, 2008. </ref>.
  +
  +
* '''[[Peripheral chemoreceptors]]''' act most importantly to detect variation of the [[oxygen]] in the [[arterial blood]], in addition to detecting arterial carbon dioxide and pH.
  +
  +
* '''[[Mechanoreceptors]]''' are located in the [[airway]]s and [[parenchyma]], and are responsible for a variety of reflex responses. These include:
  +
** The [[Hering-Breuer reflex]] that terminates inspiration to prevent over inflation of the lungs, and the reflex responses of [[coughing]], [[airway constriction]], and [[hyperventilation]].
  +
** The upper airway receptors are responsible for reflex responses such as, [[sneezing]], coughing, closure of [[glottis]], and [[hiccups]].
  +
** The [[spinal cord]] reflex responses include the activation of additional respiratory muscles as compensation, gasping response, hypoventilation, and an increase in breathing frequency and volume.
  +
  +
In addition to involuntary control of respiration by the respiratory center, respiration can be affected by conditions such as emotional state, via input from the [[limbic system]], or [[temperature]], via the [[hypothalamus]]. Voluntary control of respiration is provided via the [[cerebral cortex]], although chemoreceptor reflex is capable of overriding conscious control.
  +
  +
  +
  +
  +
== Classifications of respiration ==
  +
  +
There are several ways to classify the physiology of respiration:
  +
  +
=== By species ===
  +
  +
* [[Aquatic respiration]]
  +
* [[Buccal pumping]]
  +
  +
=== By mechanism ===
  +
  +
* [[Respiration organ]]
  +
* [[Gas exchange]]
  +
* [[Arterial blood gas]]
  +
* [[Control of respiration]]
  +
* [[Apnea]]
  +
  +
=== By experiments ===
  +
  +
* [[Huff and puff apparatus]]
  +
* [[Respirometer]]
  +
* [[Selected ion flow tube mass spectrometry]]
  +
* [[:wikibooks:Constructing school science lab equipment/Bell jar model lung|Bell jar model lung]]
  +
  +
=== By disorders ===
  +
  +
* [[Sudden Infant Death Syndrome]]
  +
* [[Myasthenia gravis]]
  +
* [[Asthma]]
  +
* [[Drowning]]
  +
* [[Choking]]
  +
* [[Dyspnea]]
  +
* [[Anaphylaxis]]
  +
* [[Pneumonia]]
  +
* [[Severe acute respiratory syndrome]]
  +
* [[Aspiration (medicine)]] - [[Pulmonary edema]]
  +
  +
=== By medication ===
  +
  +
* [[Bronchodilator]]
  +
* [[Asthma medication]]
  +
  +
=== By intensive care and emergency medicine ===
  +
  +
* [[Cardiopulmonary resuscitation|CPR]]
  +
* [[Mechanical ventilation]]
  +
* [[Intubation]]
  +
* [[Iron lung]]
  +
* [[Intensive care medicine]]
  +
* [[Liquid breathing]]
  +
* [[ECMO]]
  +
* [[Oxygen toxicity]]
  +
* [[Medical ventilator]]
  +
* [[Paramedic]]
  +
* [[Life support]]
  +
* [[General anaesthesia]]nik
  +
* [[Bronchoscopy]]
  +
* [[Laryngoscope]]
  +
  +
=== By other medical topics ===
  +
  +
* [[Respiratory therapy]]
  +
* [[Breathing gas]]es
  +
* [[Hyperbaric oxygen therapy]]
  +
* [[Hypoxia (medical)|Hypoxia]]
  +
* [[Gas embolism]]
  +
* [[Decompression sickness]]
  +
* [[Barotrauma]]
  +
* [[Oxygen toxicity]]
  +
* [[Nitrogen narcosis]]
  +
* [[Carbon dioxide poisoning]]
  +
* [[Carbon monoxide poisoning]]
  +
* [[HPNS]]
  +
* [[Salt water aspiration syndrome]]
  +
  +
== See also ==
  +
* [[Anapana]]
  +
* [[Meditation breathing]]
  +
* [[Respiratory system]]
  +
  +
[[Category:Respiration|*]]
  +
  +
<!--
  +
[[zh-min-nan:Ho͘-khip]]
  +
[[da:Respiration]]
  +
[[de:Atmung]]
  +
[[eo:Spirado]]
  +
[[fr:Respiration humaine]]
  +
[[he:נשימה]]
  +
[[is:Öndun]]
  +
[[la:Respiratio]]
  +
[[nl:Ademhaling (mens)]]
  +
[[no:Respirasjon]]
  +
[[ja:呼吸]]
  +
[[pl:Oddychanie]]
  +
[[pt:Respiração (fisiologia)]]
  +
[[sl:Pljučno dihanje]]
  +
[[tr:Solunum]]
  +
-->
  +
  +
{{enWP|Respiration (physiology)}}

Latest revision as of 13:55, 14 September 2011

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


This article needs rewriting to enhance its relevance to psychologists..
Please help to improve this page yourself if you can..


This is a background article for other aspects see respiration


In human and animal physiology, respiration is the transport of oxygen from the ambient air to the tissue cells and the transport of carbon dioxide in the opposite direction. This is in contrast to the biochemical definition of respiration, which refers to cellular respiration: the metabolic process by which an organism obtains energy by reacting oxygen with glucose to give water, carbon dioxide and ATP (energy). Although physiologic respiration is necessary to sustain cellular respiration and thus life in animals, the processes are distinct: cellular respiration takes place in individual cells of the animal, while physiologic respiration concerns the bulk flow and transport of metabolites between the organism and external environment.

In unicellular organisms, simple diffusion is sufficient for gas exchange: every cell is constantly bathed in the external environment, with only a short distance for gases to flow across. In contrast, complex multicellular organisms such as humans have a much greater distance between the environment and their innermost cells, thus, a respiratory system is needed for effective gas exchange. The respiratory system works in concert with a circulatory system to carry gases to and from the tissues.

In air-breathing vertebrates such as humans, respiration of oxygen includes four stages:

  • Ventilation from the ambient air into the alveoli of the lung.
  • Pulmonary gas exchange from the alveoli into the pulmonary capillaries.
  • Gas transport from the pulmonary capillaries through the circulation to the peripheral capillaries in the organs.
  • Peripheral gas exchange from the tissue capillaries into the cells and mitochondria.

Note that ventilation and gas transport require energy to power mechanical pumps (the diaphragm and heart respectively), in contrast to the passive diffusion taking place in the gas exchange steps.

Respiratory physiology is the branch of human physiology concerned with respiration.

Respiration, the biological function ot the respiratory system, by which the organism absorbs oxygen and disposes of carbon dioxide. See the following subjects :

Control of respiration

Control of ventilation (control of respiration) refers to the physiological mechanisms involved in the control of physiologic ventilation. Gas exchange primarily controls the rate of respiration.

The most important function of breathing is gas exchange (of oxygen and carbon dioxide). Thus the control of respiration is centered primarily on how well this is achieved by the lungs.

Control Unit

The control unit of ventilation consists of a processor (the breathing centre in the brain) which integrates inputs (emotional, chemical and physical stimuli) and controls an effector (the lungs) via motor nerves arising from the spinal cord. In humans, quiet breathing occurs by the cyclical contraction of the inspiratory muscles, particularly the diaphragm. Inhalation is normally an active process, and exhalation is passive. However, when ventilation is increased (over 40 litres per minute), such as during heavy exercise, muscle activity becomes involved in exhalation. Under these circumstances, the work of breathing over time can exceed the metabolic rate of the rest of the body.

Ventilatory Pattern

The pattern neuronal firing when breathing can be divided into inspiratory and expiratory phases. Inspiration shows a sudden ramp increase in motor discharge to the inspiratory muscles (including pharyngeal dilator muscles). Before the end of inspiration, there is a decline in motor discharge. Exhalation is usually silent, except at high minute ventilation rates.

The mechanism of generation of the ventilatory pattern is not completely understood, but involves the integration of neural signals by respiratory control centres in the medulla and pons. The nuclei known to be involved are divided into regions known as the following:

• Coordinates transition between inhalation and exhalation • Sends inhibitory impulses to the inspiratory area • The pneumotaxic center is involved in fine tuning of respiration rate.

• Coordinates transition between inhalation and exhalation • Sends stimulatory impulses to the inspiratory area – activates and prolongs inhalation (long deep breaths) • Pnemotaxic control overrides signals from the apneustic area to end inspiration There is further integration in the anterior horn cells of the spinal cord.


Ventilation is normally controlled by the autonomic nervous system, with only limited voluntary override. An exception to this is Ondine's curse, where autonomic control is lost.

Determinants of Ventilatory Rate

Ventilatory rate (minute volume) is tightly controlled and determined primarily by blood levels of carbon dioxide as determined by metabolic rate. Blood levels of oxygen become important in hypoxia. These levels are sensed by chemoreceptors in the medulla oblongata for pH, and the carotid and aortic bodies for oxygen and carbon dioxide. Afferent neurons from the carotid bodies and aortic bodies are via the glossopharyngeal nerve (CN IX) and the vagus nerve (CN X), respectively.

Levels of CO2 rise in the blood when the metabolic use of O2 is increased beyond the capacity of the lungs to expel CO2. CO2 is stored largely in the blood as bicarbonate (HCO3-) ions, by conversion first to carbonic acid (H2CO3), by the enzyme carbonic anhydrase, and then by disassociation of this acid to H+ and HCO3-. Build-up of CO2 therefore causes an equivalent build-up of the disassociated hydrogen ion, which, by definition, decreases the pH of the blood.

During moderate exercise, ventilation increases in proportion to metabolic production of carbon dioxide. During strenuous exercise, ventilation increases more than needed to compensate for carbon dioxide production. Lactic acid produced during anaerobic metabolism lowers pH and thus increases breathing. In aerobic metabolism, one molecule of acid (CO2) is produced in order to produce 6 molecules of the energy carrier ATP, whereas in anaerobic metabolism, 6 molecules of lactic acid are produced to provide the same amount of energy.

Mechanical stimulation of the lungs can trigger certain reflexes as discovered in animal studies. In humans, these seem to be more important in neonates and ventilated patients, but of little relevance in health. The tone of respiratory muscle is believed to be modulated by muscle spindles via a reflex arc involving the spinal cord.

Drugs for example respiration stimulating drugs can greatly influence the control of respiration. Opioids and anaesthetic drugs tend to depress ventilation, especially with regards to Carbon Dioxide response. Stimulants such as Amphetamines can cause hyperventilation.

Pregnancy tends to increase ventilation (lowering plasma carbon dioxide tension below normal values). This is due to increased progesterone levels and results in enhanced gas exchange in the placenta. Ventilation is temporarily modified by voluntary acts and complex reflexes such as sneezing, coughing and vomiting.

Feedback control

Receptors play important roles in the regulation of respiration; central and peripheral chemoreceptors, and mechanoreceptors.

  • Central chemoreceptors of the central nervous system, located on the ventrolateral medullary surface, are sensitive to the pH of their environment[1] [2].
  • Peripheral chemoreceptors act most importantly to detect variation of the oxygen in the arterial blood, in addition to detecting arterial carbon dioxide and pH.
  • Mechanoreceptors are located in the airways and parenchyma, and are responsible for a variety of reflex responses. These include:
    • The Hering-Breuer reflex that terminates inspiration to prevent over inflation of the lungs, and the reflex responses of coughing, airway constriction, and hyperventilation.
    • The upper airway receptors are responsible for reflex responses such as, sneezing, coughing, closure of glottis, and hiccups.
    • The spinal cord reflex responses include the activation of additional respiratory muscles as compensation, gasping response, hypoventilation, and an increase in breathing frequency and volume.

In addition to involuntary control of respiration by the respiratory center, respiration can be affected by conditions such as emotional state, via input from the limbic system, or temperature, via the hypothalamus. Voluntary control of respiration is provided via the cerebral cortex, although chemoreceptor reflex is capable of overriding conscious control.



Classifications of respiration

There are several ways to classify the physiology of respiration:

By species

  • Aquatic respiration
  • Buccal pumping

By mechanism

By experiments

  • Huff and puff apparatus
  • Respirometer
  • Selected ion flow tube mass spectrometry
  • Bell jar model lung

By disorders

By medication

By intensive care and emergency medicine

By other medical topics

See also


This page uses Creative Commons Licensed content from Wikipedia (view authors).
  1. Coates EL, Li A, Nattie EE. Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol. 75(1):5-14, 1984.
  2. Cordovez JM, Clausen C, Moore LC, Solomon, IC. A mathematical model of pH(i) regulation in central CO2 chemoreception. Adv Exp Med Biol. 605:306-11, 2008.