Ranking
this wiki
Ad blocker interference detected!
Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers
Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.
Assessment |
Biopsychology |
Comparative |
Cognitive |
Developmental |
Language |
Individual differences |
Personality |
Philosophy |
Social |
Methods |
Statistics |
Clinical |
Educational |
Industrial |
Professional items |
World psychology |
Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory
A ranking is a relationship between a set of items such that, for any two items, the first is either "ranked higher than", "ranked lower than" or "ranked equal to" the second. In mathematics, this is known as a weak order or total preorder of objects. It is not necessarily a total order of objects because two different objects can have the same ranking. The rankings themselves are totally ordered. For example, materials are totally preordered by hardness, while degrees of hardness are totally ordered.
By reducing detailed measures to a sequence of ordinal numbers, rankings make it possible to evaluate complex information according to certain criteria. Thus, for example, an Internet search engine may rank the pages it finds according to an evaluation of their relevance, making it possible for the user quickly to select the pages they are likely to want to see.
Analysis of data obtained by ranking commonly requires non-parametric statistics.
Examples of ranking Edit
- In many sports, individuals or teams are given rankings, generally by the sport's governing body
- In football (soccer), national teams are ranked in the FIFA World Rankings and, unofficially, in the World Football Elo Ratings.
- In The Olympics, each member country (NOC) is ranked based upon gold, silver and bronze medal counts in the Olympic medal rankings.
- In snooker, players are ranked using the Snooker world rankings
- In ice hockey, national teams are ranked in the IIHF World Ranking
- In golf, the top male golfers are ranked using the Official World Golf Rankings
- In relation to credit standing, the ranking of a security refers to where that particular security would stand in a wind up of the issuing company, i.e., its seniority in the company's capital structure. For instance, capital notes are subordinated securities; they would rank behind senior debt in a wind up. In other words the holders of senior debt would be paid out before subordinated debt holders received any funds.
- Some sites propose the user to rank whatever exists (what's the best restaurant, the best city, the most popular dog, the top scorer in international air-guitar, ...), like Rankingfever, the most well-known in Europe, ItsRanked!, Rankopedia, or Rankrz.
- Search engines rank web pages depending on their relevance to a user's query. See HITS algorithm, PageRank, TrustRank.
- In video gaming, players may be given a ranking. To "rank up" is to achieve a higher ranking relative to other players, especially with strategies that do not depend on the player's skill.
- A bibliogram ranks common noun phrases in a piece of text.
- In language, the status of an item (usually through what is known as "downranking" or "rank-shifting") in relation to the uppermost rank in a clause; for example, in the sentence "I want to eat the cake you made today", "eat" is on the uppermost rank, but "made" is downranked as part of the nominal group "the cake you made today"; this nominal group behaves as though it were a single noun (i.e., I want to eat it), and thus the verb within it ("made") is ranked differently from "eat".
- See also: ordinal measurement
yes its true that ranking is order sequence
Strategies for assigning rankings Edit
It is not always possible to assign rankings uniquely. For example, in a race or competition two (or more) entrants might tie for a place in the ranking. When computing an ordinal measurement, two (or more) of the quantities being ranked might measure equal. In these cases, one of the strategies shown below for assigning the rankings may be adopted.
A common short-hand way to distinguish these ranking strategies is by the ranking numbers that would be produced for four items, with the first item ranked ahead of the second and third (which compare equal) which are both ranked ahead of the fourth. These names are also shown below.
Standard competition ranking ("1224" ranking) Edit
In competition ranking, items that compare equal receive the same ranking number, and then a gap is left in the ranking numbers. The number of ranking numbers that are left out in this gap is one less than the number of items that compared equal. Equivalently, each item's ranking number is 1 plus the number of items ranked above it. This ranking strategy is frequently adopted for competitions, as it means that if two (or more) competitors tie for a position in the ranking, the position of all those ranked below them is unaffected (ie, a competitor only comes second if exactly one person scores better than them, third if exactly two people score better than them, fourth if exactly three people score better than them, etc).
Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first"), B gets ranking number 2 ("joint second"), C also gets ranking number 2 ("joint second") and D gets ranking number 4 ("fourth"). In this case, nobody would get ranking number 3 ("third") and that would be left as a gap.
Modified competition ranking ("1334" ranking) Edit
Sometimes, competition ranking is done by leaving the gaps in the ranking numbers before the sets of equal-ranking items (rather than after them as in standard competition ranking). The number of ranking numbers that are left out in this gap remains one less than the number of items that compared equal. Equivalently, each item's ranking number is equal to the number of items ranked equal to it or above it. This ranking ensures that a competitor only comes second if they score higher than all but one of their opponents, third if they score higher than all but two of their opponents, etc.
Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first"), B gets ranking number 3 ("joint third"), C also gets ranking number 3 ("joint third") and D gets ranking number 4 ("fourth"). In this case, nobody would get ranking number 2 ("second") and that would be left as a gap.
Dense ranking ("1223" ranking) Edit
In dense ranking, items that compare equal receive the same ranking number, and the next item(s) receive the immediately following ranking number. Equivalently, each item's ranking number is 1 plus the number of items ranked above it that are distinct with respect to the ranking order.
Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first"), B gets ranking number 2 ("joint second"), C also gets ranking number 2 ("joint second") and D gets ranking number 3 ("third").
Ordinal ranking ("1234" ranking) Edit
In ordinal ranking, all items receive distinct ordinal numbers, including items that compare equal. The assignment of distinct ordinal numbers to items that compare equal can be done at random, or arbitrarily, but it is generally preferable to use a system that is arbitrary but consistent, as this gives stable results if the ranking is done multiple times. An example of an arbitrary but consistent system would be to incorporate other attributes into the ranking order (such as alphabetical ordering of the competitor's name) to ensure that no two items exactly match.
With this strategy, if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first") and D gets ranking number 4 ("fourth"), and either B gets ranking number 2 ("second") and C gets ranking number 3 ("third") or C gets ranking number 2 ("second") and B gets ranking number 3 ("third").
In computer data processing, ordinal ranking is also referred to as "row numbering"....
Fractional ranking ("1 2.5 2.5 4" ranking) Edit
Items that compare equal receive the same ranking number, which is the mean of what they would have under ordinal rankings. Equivalently, the ranking number of 1 plus the number of items ranked above it plus half the number of items equal to it. This strategy has the property that the sum of the ranking numbers is the same as under ordinal ranking. For this reason, it is used in computing Borda counts and in statistical tests (see below).
Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first"), B and C each get ranking number 2.5 (average of "joint second/third") and D gets ranking number 4 ("fourth").
Ranking in statistics Edit
Some kinds of statistical tests employ calculations based on ranks. Examples:
Ranks can have non-integer values for tied data values. When there is an even number of the same data value, the statistical rank (being the median rank of the tied data) ends in ½.
Some related statistical tests employ the use of u-scores, which are computed as the number of inferior minus the number of superior items. Examples:
For univariate data, tests ranks and u-scores are equivalent (Example: The "Wilcoxon/Mann-Whitney test"). For multivariate data, however, generalizations of ranks (Kalbfleisch and Prentice 1973) and u-scores (Hoeffding 1948) can differ.
Rank function in Excel Edit
The rank function in Microsoft Excel assigns competition ranks ("1224") as described above. For some statistical purposes, that is not the desired result - for instance, it means that the sum of ranks for a list of a given length changes depending on the number of ties. Pottel has described a user defined ranking function which assigns fractional ranks to ties to keep the sum consistent.[1]
External linksEdit
- A MATLAB Toolbox for computing rankings using five different methodologies
- Ranqit - personal subjective rankings site
- RssGsc - A tool that uses rank sum statistics applied to genetic analysis
This page uses Creative Commons Licensed content from Wikipedia (view authors). |