Wikia

Psychology Wiki

Purkinje cells

Talk0
34,135pages on
this wiki
Revision as of 08:11, December 30, 2008 by Dr Joe Kiff (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


For the cells of the electrical conduction system of the heart, see Purkinje fibers

Purkinje cells (or Purkinje neurons) are a class of GABAergic neuron located in the cerebellar cortex. They are named after their discoverer, Czech anatomist Jan Evangelista Purkyně.

AnatomyEdit

File:Gray706.png

These cells are some of the largest neurons in the human brain, with an intricately elaborate dendritic arbor, characterized by a large number of dendritic spines. Purkinje cells are found within the Purkinje layer in the cerebellum. Purkinje cells are aligned like dominos stacked one in front of the other. Their large dendritic arbors form nearly two dimensional layers through which parallel fibers from the deeper-layers pass. These parallel fibers make relatively weaker excitatory (glutamatergic) synapses to spines in the Purkinje cell dendrite, whereas climbing fibers originating from the inferior olivary nucleus in the medulla provide very powerful excitatory input to the proximal dendrites and cell soma. Parallel fibers pass orthogonally through the Purkinje neuron's dendritic arbor, with up to 200,000 parallel fibers forming a synapse with a single Purkinje cell. Alternatively, each Purkinje cell only receives a synapse from a single climbing fiber. Both basket and stellate cells (found in the cerebellar molecular layer) provide inhibitory (GABAergic) input to the Purkinje cell, with basket cells synapsing on the Purkinje cell axon initial segment and stellate cells onto the dendrites.

Purkinje cells send inhibitory projections to the deep cerebellar nuclei, and constitute the sole output of all motor coordination in the cerebellar cortex.

Electrophysiological activityEdit

CerebCircuit

Microcircuitry of the cerebellum. Excitatory synapses are denoted by (+) and inhibitory synapses by (-).
MF: Mossy fiber.
DCN: Deep cerebellar nuclei.
IO: Inferior olive.
CF: Climbing fiber.
GC: Granule cell.
PF: Parallel fiber.
PC: Purkinje cell.
GgC: Golgi cell.
SC: Stellate cell.
BC: Basket cell.

Purkinje cells show two distinct forms of electrophysiological activity:

  • Simple spikes occur at rates of 17 - 150 Hz (Raman and Bean, 1999) either spontaneously or and when Purkinje cells are activated synaptically by the parallel fibers, the axons of the granule cells.
  • Complex spikes are rapid (>300 Hz) bursts of spikes caused by climbing fiber activation, and can involve the generation of calcium-mediated action potentials in the dendrites. Following complex spike activity simple spikes can be suppressed by the powerful complex spike input.

Purkinje cells show spontaneous electrophysiological activity in the form of trains of spikes both sodium as well as calcium dependent was initially shown by Rodolfo Llinas (Llinas and Hess (1977) and Llinas and Sugimori (1980. P type calcium channels were named after Purkinje cells where they were initially encountered (Llinas et al 1989), which are crucial in cerebellar function. It has recently been shown that climbing fiber activation of the Purkinje cell can shift its activity from a quiet state to a spontaneously active state, and vice-versa, serving as a type of toggle switch (Lowenstein et al., 2005, Nature Neuroscience). However, these findings have recently been challenged by a study suggesting that such toggling by climbing fiber inputs occurs predominantly in anaesthetized animals, and that Purkinje cells in awake behaving animals in general operate almost continuously in the upstate (Schonewille et al., 2006, Nature Neuroscience).

Findings have suggested that Purkinje cell dendrites release endocannabinoids that can transiently downregulate both excitatory and inhibitory synapses[1]

Medical conditions related to Purkinje cellsEdit

In humans, Purkinje cells are affected in a variety of diseases ranging from toxic exposure (alcohol, lithium), to autoimmune diseases and to genetic mutations (spinocerebellar ataxias, autism) and neurodegenerative diseases that are not thought to have a known genetic basis (cerebellar type of multiple system atrophy, sporadic ataxias).


In some domestic animals, a condition where the Purkinje cells begin to atrophy shortly after birth, called Cerebellar abiotrophy, can lead to symptoms including ataxia, intention tremors, hyperreactivity, lack of menace reflex, stiff or high-stepping gait, apparent lack of awareness of where the feet are (sometimes standing or walking with a foot knuckled over), and a general inability to determine space and distance.[How to reference and link to summary or text] A similar condition known as cerebellar hypoplasia occurs when Purkinje cells either fail to develop in utero or die off in utero prior to birth. Ataxia-Telangiectasia is a genetic condition, in which Purkinje cells are progressively lost.

LinksEdit

ReferencesEdit

  1. Kreitzer A & Regehr W, 2001. Retrograde Inhibition of Presynaptic Calcium Influx by Endogenous Cannabinoids at Excitatory Synapses onto Purkinje Cells. Neuron Mar;29(3):717-27.
  • Andersen, B. B. (2004). Reduction of Purkinje cell volume in cerebellum of alcoholics: Brain Research Vol 1007(1-2) May 2004, 10-18.
  • Anderson, B. J. (1993). The effects of paired and unpaired eyeblink conditioning of purkinje cell morphology: Dissertation Abstracts International.
  • Anderson, B. J., Relucio, K., Haglund, K., Logan, C., Knowlton, B., Thompson, J., et al. (1999). Effects of paired and unpaired eye-blink conditioning on Purkinje cell morphology: Learning & Memory Vol 6(2) Mar-Apr 1999, 128-137.
  • Anderson, J. L., Head, S. I., & Morley, J. W. (2004). Long-term depression is reduced in cerebellar Purkinje cells of dystrophin-deficient mdx mice: Brain Research Vol 1019(1-2) Sep 2004, 289-292.
  • Apfel, M. I. R., Esberard, C. A., Rodrigues, F. K. P., Junior, F. M. B., & Sillero, R. O. (2002). Stereologic study of the cerebellar Purkinje cells submitted to alcoholic intoxication in Wistar rats: Arquivos de Neuro-Psiquiatria Vol 60(2) Jun 2002, 258-263.
  • Ashwell, K. W. S., Paxinos, G., & Watson, C. R. R. (2007). Cyto- and chemoarchitecture of the cerebellum of the short-beaked echidna (Tachyglossus aculeatus): Brain, Behavior and Evolution Vol 70(2) Aug 2007, 71-89.
  • Barmack, N. H., & Yakhnitsa, V. (2002). Vestibularly evoked climbing-fiber responses modulate simple spikes in rabbit cerebellar purkinje neurons. New York, NY: New York Academy of Sciences.
  • Barski, J. J., Hartmann, J., Rose, C. R., Hoebeek, F., Morl, K., Noll-Hussong, M., et al. (2003). Calbindin in Cerebellar Purkinje Cells Is a Critical Determinant of the Precision of Motor Coordination: Journal of Neuroscience Vol 23(8) Apr 2003, 3469-3477.
  • Baudry, M. (1996). Similarities and contrasts between cerebellar LTD and hippocampal LTP: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 435-436, 503-527.
  • Beaton, A. A. (2002). Dyslexia and the cerebellar deficit hypothesis: Cortex Vol 38(4) Sep 2002, 479-490.
  • Bekkering, H., Heck, D., & Sultan, F. (1996). What has to be learned in motor learning? : Behavioral and Brain Sciences Vol 19(3) Sep 1996, 436-437, 503-527.
  • Belton, T., & McCrea, R. A. (1999). Contribution of the cerebellar flocculus to gaze control during active head movements: Journal of Neurophysiology Vol 81(6) Jun 1999, 3105-3109.
  • Belton, T., & McCrea, R. A. (2000). Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation: Journal of Neurophysiology Vol 84(3) Sep 2000, 1599-1613.
  • Belton, T., & McCrea, R. A. (2000). Role of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit: Journal of Neurophysiology Vol 84(3) Sep 2000, 1614-1626.
  • Bindman, L. J. (1996). How and where does nitric oxide affect cerebellar synaptic plasticity? New methods for investigating its action: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 437-438, 503-527.
  • Bishop, D. V. M. (2002). Cerebellar abnormalities in developmental dyslexia: Cause, correlate or consequence? : Cortex Vol 38(4) Sep 2002, 491-498.
  • Bosco, G., Giaquinta, G., Valle, M. S., Caserta, C., Casabona, A., & Perciaville, V. (2000). Distribution of spinocerebellar Purkinje cell responses to passive forelimb movements in the rat: European Journal of Neuroscience Vol 12(11) Nov 2000, 4063-4073.
  • Bower, J. M. (2002). The organization of cerebellar cortical circuitry revisited: Implications for function. New York, NY: New York Academy of Sciences.
  • Carta, M., Murru, L., Botta, P., Talani, G., Sechi, G., De Riu, P., et al. (2006). The muscle relaxant thiocolchicoside is an antagonist of GABA-sub(A) receptor function in the central nervous system: Neuropharmacology Vol 51(4) Sep 2006, 805-815.
  • Cerminara, N. L., & Rawson, J. A. (2004). Evidence that Climbing Fibers Control an Intrinsic Spike Generator in Cerebellar Purkinje Cells: Journal of Neuroscience Vol 24(19) May 2004, 4510-4517.
  • Cesa, R., & Strata, P. (2007). Activity-dependent axonal and synaptic plasticity in the cerebellum: Psychoneuroendocrinology Vol 38(Suppl 1) Aug 2007, S31-S35.
  • Chauvet, P., & Chauvet, G. A. (1995). Mathematical conditions for adaptive control in Marr's model of the sensorimotor system: Neural Networks Vol 8(5) 1995, 693-706.
  • Chen, L., Bao, S., Lockard, J. M., Kim, J. J., & et al. (1996). Impaired classical eyeblink conditioning in cerebellar-lesioned and purkinje cell degeneration (pcd) mutant mice: Journal of Neuroscience Vol 16(8) Apr 1996, 2829-2838.
  • Chen, L., Bao, S., & Thompson, R. F. (1999). Bilateral lesions of the interpositus nucleus completely prevent eyeblink conditioning in Purkinje cell-degeneration mutant mice: Behavioral Neuroscience Vol 113(1) Feb 1999, 204-210.
  • Chen, W.-J. A., & Edwards, R. B. (2003). Prenatal nicotine exposure does not cause Purkinje cell loss in the developing rat cerebellar vermis: Neurotoxicology and Teratology Vol 25(5) Sep-Oct 2003, 633-637.
  • Chen, W.-J. A., Edwards, R. B., Romero, R. D., Parnell, S. E., & Monk, R. J. (2003). Long-term nicotine exposure reduces Purkinje cell number in the adult rat cerebellar vermis: Neurotoxicology and Teratology Vol 25(3) May-Jun 2003, 329-334.
  • Chen, W.-j. A., Parnell, S. E., & West, J. R. (1998). Neonatal alcohol and nicotine exposure limits brain growth and depletes cerebellar Purkinje cells: Alcohol Vol 15(1) Jan 1998, 33-41.
  • Clark, H. B., Burright, E. N., Yunis, W. S., Larson, S., Wilcox, C., Hartman, B., et al. (1997). Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations: Journal of Neuroscience Vol 17(19) Oct 1997, 7385-7395.
  • Coesmans, M., Smitt, P. A. S., Linden, D. J., Shigemoto, R., Hirano, T., Yamakawa, Y., et al. (2003). Mechanisms Underlying Cerebellar Motor Deficits Due to mGluR1-Autoantibodies: Annals of Neurology Vol 53(3) Mar 2003, 325-336.
  • Coltz, J. D., Johnson, M. T. V., & Ebner, T. J. (1999). Cerebellar purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking: Journal of Neuroscience Vol 19(5) Mar 1999, 1782-1803.
  • Crepel, F. (1996). Cellular mechanisms of long-term depression: From consensus to open questions: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 488, 503-527.
  • Crepel, F., Hemart, N., Jaillard, D., & Daniel, H. (1996). Cellular mechanisms of long-term depression in the cerebellum: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 347-353, 503-527.
  • Croci, C., Fasano, S., Superchi, D., Perani, L., Martellosio, A., Brambilla, R., et al. (2006). Cerebellar Neurons and Glial Cells Are Transducible by Lentiviral Vectors without Decrease of Cerebellar Functions: Developmental Neuroscience Vol 28(3) May 2006, 216-221.
  • Daniel, H., Levenes, C., & Crepel, F. (1998). Cellular mechanisms of cerebellar LTD: Trends in Neurosciences Vol 21(9) Sep 1998, 401-407.
  • De Zeeuw, C. I., Simpson, J. I., Hoogenraad, C. C., Galjart, N., Koekkoek, S. K. E., & Ruigrok, T. J. H. (1998). Microcircuitry and function of the inferior olive: Trends in Neurosciences Vol 21(9) Sep 1998, 391-400.
  • Dean, P. (1996). Saccades and the adjustable pattern generator: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 441-442, 503-527.
  • Deubel, H., & Bridgeman, B. (1995). Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades: Vision Research Vol 35(4) Feb 1995, 529-538.
  • Dikranian, K., Qin, Y.-Q., Labruyere, J., Nemmers, B., & Olney, J. W. (2005). Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures: Developmental Brain Research Vol 155(1) Mar 2005, 1-13.
  • Doi, T., Kuroda, S., Michikawa, T., & Kawato, M. (2005). Inositol 1,4,5-Trisphosphate-Dependent Ca-super(2+) Threshold Dynamics Detect Spike Timing in Cerebellar Purkinje Cells: Journal of Neuroscience Vol 25(4) Jan 2005, 950-961.
  • Dowson, J. H., Mountjoy, C. Q., Cairns, M. R., Wilton-Cox, H., & Bondareff, W. (1998). Lipopigment Changes in Purkinje Cells in Alzheimer's Disease: Journal of Alzheimer's Disease Vol 1(2) 1998, 71-79.
  • Dowson, J. H., Wilton-Cox, H., & Cairns, M. R. (1993). Effects of chronic chlorpromazine or lithium administration on ageing-related lipopigment in rat Purkinje neurones: Journal of Psychopharmacology Vol 7(2) 1993, 195-202.
  • Dufosse, M. (1996). How can the cerebellum match "error signal" and "error correction"? : Behavioral and Brain Sciences Vol 19(3) Sep 1996, 442, 503-527.
  • Dunin-Barkowski, W. L., & Wunsch, D. C. (1999). Phase-based storage of information in the cerebellum: Neurocomputing: An International Journal Vol 26-27 Jun 1999, 677-685.
  • Ebner, T. J., Johnson, M. T. V., Roitman, A., & Fu, Q. (2002). What do complex spikes signal about limb movements? New York, NY: New York Academy of Sciences.
  • Endo, S., & Launey, T. (2003). ERKs regulate PKC-dependent synaptic depression and declustering of glutamate receptors in cerebellar Purkinje cells: Neuropharmacology Vol 45(6) Nov 2003, 863-872.
  • Faulstich, M., van Alphen, A. M., Luo, C., du Lac, S., & De Zeeuw, C. I. (2006). Oculomotor Plasticity During Vestibular Compensation Does Not Depend on Cerebellar LTD: Journal of Neurophysiology Vol 96(3) Sep 2006, 1187-1195.
  • Feldman, A. G., & Levin, M. F. (1996). Grasping cerebellar function depends on our understanding the principles of sensorimotor integration: The frame of reference hypothesis: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 442-445, 503-527.
  • Fernandez-Gonzalez, A., La Spada, A. R., Treadaway, J., Higdon, J. C., Harris, B. S., Sidman, R. L., et al. (2002). Purkinje cell degeneration (pcd): Phenotypes caused by mutations in the axotomy-induced gene, Nna1: Science Vol 295(5561) Mar 2002, 1904-1906.
  • Fernandez-Gonzalez, A., La Spada, A. R., Treadaway, J., Higdon, J. C., Harris, B. S., Sidman, R. L., et al. (2002). "Purkinje cell degeneration (pcd): Phenotypes caused by mutations in the axotomy-induced gene, Nna1": Erratum: Science Vol 297(5580) Jul 2002, 337.
  • Ferris, H. B. (1918). The neurone: Psychological Bulletin Vol 15(8) Aug 1918, 257-263.
  • Fiala, J. C., Grossberg, S., & Bullock, D. (1996). Metabotropic glutamate receptor activation in cerebellar purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response: Journal of Neuroscience Vol 16(11) Jun 1996, 3760-3774.
  • Finch, A. J., Nicolson, R. I., & Fawcett, A. J. (2002). Evidence for a neuroanatomical difference within the olivo-cerbellar pathway of adults with dyslexia: Cortex Vol 38(4) Sep 2002, 529-539.
  • Finch, C. E. (2003). Neurons, glia, and plasticity in normal brain aging: Neurobiology of Aging Vol 24(Suppl1) May-Jun 2003, S123-S127.
  • Freeman, J. H., Jr., Shi, T., & Schreurs, B. G. (1998). Pairing-specific long-term depression prevented by blockade of PKC or intracellular Ca-super( 2+): Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 9(10) Jul 1998, 2237-2241.
  • Fukushima, K., Buharin, E. V., & Fukushima, J. (1993). Responses of floccular Purkinje cells to sinusoidal vertical rotation and effects of muscimol infusion into the flocculus in alert cats: Neuroscience Research Vol 17(4) Sep 1993, 297-305.
  • Funari, V. A., Herrera, V. L. M., Freeman, D., & Tolan, D. R. (2005). Genes required for fructose metabolism are expressed in Purkinje cells in the cerebellum: Molecular Brain Research Vol 142(2) Dec 2005, 115-122.
  • Fushiki, H., Sato, Y., Miura, A., & Kawasaki, T. (1994). Climbing fiber responses of Purkinje cells to retinal image movement in cat cerebellar flocculus: Journal of Neurophysiology Vol 71(4) Apr 1994, 1336-1350.
  • Gad, Y. P. (2008). Computational models of cerebellar purkinje and fastigial neuron behavior during horizontal saccades. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Gandhi, C. C., Kelly, R. M., Wiley, R. G., & Walsh, T. J. (2000). Impaired acquisition of a Morris water maze task following selective destruction of cerebellar Purkinje cells with OX7-saporin: Behavioural Brain Research Vol 109(1) Apr 2000, 37-47.
  • Gauck, V., & Jaeger, D. (2003). The Contribution of NMDA and AMPA Conductances to the Control of Spiking in Neurons of the Deep Cerebellar Nuclei: Journal of Neuroscience Vol 23(22) Nov 2003, 8109-8118.
  • Ghozland, S., Aguado, F., Espinosa-Parrilla, J. F., Soriano, E., & Maldonado, R. (2002). Spontaneous network activity of cerebellar granule neurons: Impairment by in vivo chronic cannabinoid administration: European Journal of Neuroscience Vol 16(4) Aug 2002, 641-651.
  • Gilbert, P. F. C. (1996). How and what does the cerebellum learn? : Behavioral and Brain Sciences Vol 19(3) Sep 1996, 449-450, 503-527.
  • Gonzalez-Burgos, I., & Alejandre-Gomez, M. (2005). Cerebellar granule cell and Bergmann glial cell maturation in the rat is disrupted by pre- and post-natal exposure to moderate levels of ethanol: International Journal of Developmental Neuroscience Vol 23(4) Jun 2005, 383-388.
  • Goodlett, C. R., & Eilers, A. T. (1997). Alcohol-induced Purkinje cell loss with a single binge exposure in neonatal rats: A stereological study of temporal windows of vulnerability: Alcoholism: Clinical and Experimental Research Vol 21(4) Jun 1997, 738-744.
  • Goodlett, C. R., & Lundahl, K. R. (1996). Temporal determinants of neonatal alcohol-induced cerebellar damage and motor performance deficits: Pharmacology, Biochemistry and Behavior Vol 55(4) Dec 1996, 531-540.
  • Goodlett, C. R., Peterson, S. D., Lundahl, K. R., & Pearlman, A. D. (1997). Binge-like alcohol exposure of neonatal rats via intragastric intubation induces both purkinge cell loss and cortical astrogliosis: Alcoholism: Clinical and Experimental Research Vol 21(6) Sep 1997, 1010-1017.
  • Goossens, H. H. L. M., Hoebeek, F. E., van Alphen, A. M., van der Steen, J., Stahl, J. S., De Zeeuw, C. I., et al. (2004). Simple spike and complex spike activity of floccular Purkinje cells during the optokinetic reflex in mice lacking cerebellar long-term depression: European Journal of Neuroscience Vol 19(3) Feb 2004, 687-697.
  • Goossens, J., Daniel, H., Rancillac, A., van der Steen, J., Oberdick, J., Crepel, F., et al. (2001). Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje excitability in alert mice: Journal of Neuroscience Vol 21(15) Aug 2001, 5813-5823.
  • Goto, J.-I., Inoue, T., Kuruma, A., & Mikoshiba, K. (2006). Short-term potentiation at the parallel fiber-Purkinje cell synapse: Neuroscience Research Vol 55(1) May 2006, 28-33.
  • Green, J. T. (2003). Using eyeblink classical conditioning as a test of the functional consequences of exposure of the developing cerebellum to alcohol: Integrative Physiological & Behavioral Science Vol 38(1) Jan-Mar 2003, 45-64.
  • Green, J. T., & Steinmetz, J. E. (2005). Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning: Learning & Memory Vol 12(3) May 2005, 260-269.
  • Grisel, J. J., & Chen, W.-J. A. (2005). Antioxidant Pretreatment Does Not Ameliorate Alcohol-Induced Purkinje Cell Loss in the Developing Rat Cerebellum: Alcoholism: Clinical and Experimental Research Vol 29(7) Jul 2005, 1223-1229.
  • Gruol, D. L., & Parsons, K. L. (1994). Chronic exposure to alcohol during development alters the calcium currents of cultured cerebellar Purkinje neurons: Brain Research Vol 634(2) Jan 1994, 283-290.
  • Hartell, N. A. (1996). Two separate pathways for cerebellar LTD: NO-dependent and NO-independent: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 453-455, 503-527.
  • Hartmann, J., Blum, R., Kovalchuk, Y., Adelsberger, H., Kuner, R., Durand, G. M., et al. (2004). Distinct Roles of Galpha -sub(q) and Galpha -sub-1-sub-1 for Purkinje Cell Signaling and Motor Behavior: Journal of Neuroscience Vol 24(22) Jun 2004, 5119-5130.
  • Hashimoto, K., & Kano, M. (2005). Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum: Neuroscience Research Vol 53(3) Nov 2005, 221-228.
  • Heck, D. H., Thach, W. T., & Keating, J. G. (2007). On-beam synchrony in the cerebellum as the mechanism for the timing and coordination of movement: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 104(18) May 2007, 7658-7663.
  • Helmkamp, C. E., Bigelow, L. B., Paltan-Ortiz, J. D., Torrey, E. F., Kleinman, J. E., & Herman, M. M. (1999). Evaluation of superior vermal Purkinje cell placement in mental illness: Biological Psychiatry Vol 45(10) May 1999, 1370-1375.
  • Hepp, K. (1996). Programming the cerebellum: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 455, 503-527.
  • Herson, P. S., Virk, M., Rustay, N. R., Bond, C. T., Crabbe, J. C., Adelman, J. P., et al. (2003). A mouse model of episodic ataxia type-1: Nature Neuroscience Vol 6(4) Apr 2003, 378-383.
  • Hesslow, G. (1996). Positive cerebellar feedback loops: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 455-456, 503-527.
  • Hesslow, G., & Ivarsson, M. (1994). Suppression of cerebellar Purkinje cells during conditioned responses in ferrets: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 5(5) Jan 1994, 649-652.
  • Hirano, T. (1996). Molecules involved in cerebellar long-term depression (LTD) and mutant mice defective in it: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 456-457, 503-527.
  • Hirata, Y., Blazquez, P., & Highstein, S. (2006). Identification of loci involved in the memory of chronic motor learning of the vertical vestibuloocular reflex in squirrel monkeys: The Cerebellum Vol 5(4) 2006, 296-300.
  • Hirata, Y., & Highstein, S. M. (2001). Acute adaptation of the vestibuloocular reflex: Signal processing by floccular and ventral parafloccular Purkinje cells: Journal of Neurophysiology Vol 85(5) May 2001, 2267-2288.
  • Hirata, Y., & Highstein, S. M. (2002). Plasticity of the vertical VOR: A system identification approach to localizing the adaptive sites. New York, NY: New York Academy of Sciences.
  • Houk, J. C., & Alford, S. (1996). Computational significance of the cellular mechanisms for synaptic plasticity in Purkinje cells: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 457-461, 503-527.
  • Houk, J. C., & Barto, A. G. (1996). More models of the cerebellum: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 492-496, 503-527.
  • Houk, J. C., Buckingham, J. T., & Barto, A. G. (1996). Models of the cerebellum and motor learning: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 368-383, 503-527.
  • Isope, P., & Barbour, B. (2002). Properties of Unitary Granule Cellrightwards-arrow Purkinje Cell Synapses in Adult Rat Cerebellar Slices: Journal of Neuroscience Vol 22(22) Nov 2002, 9668-9678.
  • Isope, P., Dieudonne, S., & Barbour, B. (2002). Temporal organization of activity in the cerebellar cortex: A manifesto for synchrony. New York, NY: New York Academy of Sciences.
  • Ito, M. (1998). Cerebellar learning in the vestibulo-ocular reflex: Trends in Cognitive Sciences Vol 2(9) Sep 1998, 313-321.
  • Ito, M. (2002). Historical review of the significance of the cerebellum and the role of purkinje cells in motor learning. New York, NY: New York Academy of Sciences.
  • Jaeger, D. (1996). Constructing a theory of cerebellar function in limb movement control is premature: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 461-462, 503-527.
  • Jaeger, D. (2003). No parallel fiber volleys in the cerebellar cortex: Evidence from cross-correlation analysis between Purkinje cells in a computer model and in recordings from anesthetized rats: Journal of Computational Neuroscience Vol 14(3) May-Jun 2003, 311-327.
  • Jeng, C.-H., & Wang, Y. (1998). Methamphetamine modulates GABA-induced electrophysiological depression by alternating noradrenergic actions in cerebellar Purkinje neurons: Psychopharmacology Vol 136(2) Mar 1998, 132-138.
  • Kahlon, M., & Lisberger, S. G. (2000). Changes in the responses of Purkinje cells in the floccular complex of monkeys after motor learning in smooth pursuit eye movements: Journal of Neurophysiology Vol 84(6) Dec 2000, 2945-2960.
  • Kano, M. (1996). A bridge between cerebellar long-term depression and discrete motor learning: Studies on gene knockout mice: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 488-490, 503-527.
  • Kano, M. (1996). Long-lasting potentiation of GABAergic inhibitory synaptic transmission in cerebellar Purkinje cells: Its properties and possible mechanisms: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 354-361, 503-527.
  • Kano, M. (1996). New players for cerebellar long-term depression: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 462, 503-527.
  • Kawa, K. (2003). Glycine facilitates transmitter release at developing synapses: A patch clamp study from Purkinje neurons of the newborn rat: Developmental Brain Research Vol 144(1) Aug 2003, 57-71.
  • Kawato, M. (1996). The common inverse-dynamics motor-command coordinates for complex and simple spikes: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 462-464, 503-527.
  • Kern, J. K. (2003). Purkinje cell vulnerability and autism: A possible etiological connection: Brain & Development Vol 25(6) Sep 2003, 377-382.
  • Kiedrowski, L. (1996). Which cerebellar cells contribute to extracellular cGMP? : Behavioral and Brain Sciences Vol 19(3) Sep 1996, 464-465, 503-527.
  • Kim, H. T., Kim, I. H., Lee, K. J., Lee, J. R., Park, S. K., Chun, Y.-H., et al. (2002). Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning: Neuroreport: For Rapid Communication of Neuroscience Research Vol 13(13) Sep 2002, 1607-1610.
  • Kishimoto, Y., Fujimichi, R., Araishi, K., Kawahara, S., Kano, M., Aiba, A., et al. (2002). mGluR1 in cerebellar Purkinje cells is required for normal association of temporally contiguous stimuli in classical conditioning: European Journal of Neuroscience Vol 16(12) Dec 2002, 2416-2424.
  • Kishimoto, Y., Kawahara, S., Suzuki, M., Mori, H., Mishina, M., & Kirino, Y. (2001). Classical eyeblink conditioning in glutamate receptor subunit delta 2 mutant mice is impaired in the delay paradigm but not in the trace paradigm: European Journal of Neuroscience Vol 13(6) Mar 2001, 1249-1253.
  • Kohda, K., Kakegawa, W., Matsuda, S., Nakagami, R., Kakiya, N., & Yuzaki, M. (2007). The extreme C-terminus of GluRdelta 2 is essential for induction of long-term depression in cerebellar slices: European Journal of Neuroscience Vol 25(5) Mar 2007, 1357-1362.
  • Koksal, M., Ilgaz, C., Erdogan, D., Ozogul, C., Tong, E. K., & Kalender, H. (2005). Ultrastructure of rat pup's purkinje neurons whose mothers were exposed to ethanol during pregnancy and lactation: International Journal of Neuroscience Vol 115(12) Dec 2005, 1669-1686.
  • Kotaleski, J. H., Lester, D., & Blackwell, K. T. (2002). Subcellular interactions between parallel fibre and climbing fibre signals in Purkinje cells predict sensitivity of classical conditioning to interstimulus interval: Integrative Physiological & Behavioral Science Vol 37(4) Oct-Dec 2002, 265-292.
  • Kotani, S., Kawahara, S., & Kirino, Y. (2003). Purkinje cell activity during learning a new timing in classical eyeblink conditioning: Brain Research Vol 994(2) Dec 2003, 193-202.
  • Kotani, S., Kawahara, S., & Kirino, Y. (2006). Purkinje cell activity during classical eyeblink conditioning in decerebrate guinea pigs: Brain Research Vol 1068(1) Jan 2006, 70-81.
  • Krauzlis, R. J., & Lisberger, S. G. (1994). Simple spike responses of gaze velocity Purkinje cells in the floccular lobe of the monkey during the onset and offset of pursuit eye movements: Journal of Neurophysiology Vol 72(4) Oct 1994, 2045-2050.
  • Lalonde, R., Hayzoun, K., Derer, M., Mariani, J., & Strazielle, C. (2004). Neurobehavioral evaluation of Reln-super(rl-orl) mutant mice and correlations with cytochrome oxidase activity: Neuroscience Research Vol 49(3) Jul 2004, 297-305.
  • Lalonde, R., & Strazielle, C. (2003). Motor coordination, exploration, and spatial learning in a natural mouse mutation (nervous) with Purkinje cell degeneration: Behavior Genetics Vol 33(1) Jan 2003, 59-66.
  • Lang, E. J., Sugihara, I., Welsh, J. P., & Llinas, R. (1999). Patterns of spontaneous Purkinje cell complex spike activity in the awake rat: Journal of Neuroscience Vol 19(7) Apr 1999, 2728-2739.
  • Langmade, S. J., Gale, S. E., Frolov, A., Mohri, I., Suzuki, K., Mellon, S. H., et al. (2006). Pregnane X receptor (PXR) activation: A mechanism for neuroprotection in a mouse model of Niemann-Pick C disease: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 103(37) Sep 2006, 13807-13812.
  • Larouche, M. (2007). Pattern development in the mammalian cerebellum. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Lavond, D. G. (2002). Role of the nuclei in eyeblink conditioning. New York, NY: New York Academy of Sciences.
  • Le Marec, N., & Lalonde, R. (1997). Sensorimotor learning and retention during equilibrium tests in Purkinje cell degeneration mutant mice: Brain Research Vol 768(1-2) Sep 1997, 310-316.
  • Lee, K. J., Jung, J. G., Arii, T., Imoto, K., & Rhyu, I. J. (2007). Morphological changes in dendritic spines of Purkinje cells associated with motor learning: Neurobiology of Learning and Memory Vol 88(4) Nov 2007, 445-450.
  • LeMarec, N., & Lalonde, R. (1998). Treadmill performance of mice with cerebellar lesions: 1. Purkinje cell degeneration mutant mice: Behavioral Neuroscience Vol 112(1) Feb 1998, 225-232.
  • LeMarec, N., & Lalonde, R. (1998). "Treadmill performance of mice with cerebellar lesions: 1. Purkinje cell degeneration mutant mice": Correction: Behavioral Neuroscience Vol 112(3) Jun 1998, 730.
  • Leung, H. C., Suh, M., & Kettner, R. E. (2000). Cerebellar flocculus and paraflocculus Purkinje cell activity during circular pursuit in monkey: Journal of Neurophysiology Vol 83(1) Jan 2000, 13-30.
  • Levin, S. I., Khaliq, Z. M., Aman, T. K., Grieco, T. M., Kearney, J. A., Raman, I. M., et al. (2006). Impaired Motor Function in Mice With Cell-Specific Knockout of Sodium Channel ScnSa (Na-sub(v)1.6) in Cerebellar Purkinje Neurons and Granule Cells: Journal of Neurophysiology Vol 96(2) Aug 2006, 785-793.
  • Li, Y.-T., Woodruff-Pak, D. S., & Trojanowski, J. Q. (1994). Amyloid plaques in cerebellar cortex and the integrity of Purkinje cell dendrites: Neurobiology of Aging Vol 15(1) Jan-Feb 1994, 1-9.
  • Licht, R. W., Larsen, J. O., Smith, D., & Braendgaard, H. (2003). Chronic lithium treatment with or without haloperidol fails to affect the morphology of the rat cerebellum: European Neuropsychopharmacology Vol 13(3) May 2003, 173-176.
  • Lingarde, B., Jonsson, S. A. T., Luts, A., & Brun, A. (2000). Cerebellar abnormalities in mental illness. A study on Purkinje cell density in schizophrenic men: European Child & Adolescent Psychiatry Vol 9(1) Mar 2000, 21-25.
  • Lisberger, S. G., Pavelko, T. A., Bronte-Stewart, H. M., & Stone, L. S. (1994). Neural basis for motor learning in the vestibuloocular reflex of primates: II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus: Journal of Neurophysiology Vol 72(2) Aug 1994, 954-973.
  • Llinas R. and Hess, R. (1976) Proc. Natl. Acad. Science US 73: 2520-2523.
  • Llinas R. and Sugimori M. (1980) J. Physiol. 305: 171-195
  • Llinas R. Sugimori M. and Cherksey B. (1989) Annals of the New York Acad. Science 560:103-111
  • Llinas, R., Lang, E. J., & Welsh, J. P. (1997). The cerebellum, LTD, and memory: Alternative views: Learning & Memory Vol 3(6) Mar-Apr 1997, 445-455.
  • Llinas, R. R., & Walton, K. D. (1998). Cerebellum. New York, NY: Oxford University Press.
  • Loewenstein, Y., Mahon, S., Chadderton, P., Kitamura, K., Sompolinsky, H., Yarom, Y., et al. (2006). "Purkinje cells in awake behaving animals operate at the upstate membrane potential": Loewenstein et al. reply: Nature Neuroscience Vol 9(4) Apr 2006, 461.
  • Lujan, R., & Shigemoto, R. (2006). Localization of metabotropic GABA receptor subunits GABA-sub(B1) and GABA-sub(B2) relative to synaptic sites in the rat developing cerebellum: European Journal of Neuroscience Vol 23(6) Mar 2006, 1479-1490.
  • Markham, C. H., & Diamond, S. G. (2006). The effect of alcohol ingestion on ocular counterrolling: Journal of Vestibular Research: Equilibrium & Orientation Vol 16(4-5) 2006, 193-199.
  • Marshall, S. P., & Lang, E. J. (2004). Inferior Olive Oscillations Gate Transmission of Motor Cortical Activity to the Cerebellum: Journal of Neuroscience Vol 24(50) Dec 2004, 11356-11367.
  • Marti, S., Straumann, D., & Glasauer, S. (2005). The Origin of Downbeat Nystagmus: An Asymmetry in the Distribution of On-Directions of Vertical Gaze-Velocity Purkinje Cells. New York, NY: New York Academy of Sciences.
  • Martin, L. A. (2004). The role of purkinje cells in behavior: Exploration through a chimeric mouse model designed to study the cerebellar pathology of autism. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Martin, L. A., Escher, T., Goldowitz, D., & Mittleman, G. (2004). A relationship between cerebellar Purkinje cells and spatial working memory demonstrated in a lurcher/ chimera mouse model system: Genes, Brain & Behavior Vol 3(3) Jun 2004, 158-166.
  • Martin, L. A., Goldowitz, D., & Mittleman, G. (2003). The cerebellum and spatial ability: Dissection of motor and cognitive components with a mouse model system: European Journal of Neuroscience Vol 18(7) Oct 2003, 2002-2010.
  • Martin, L. A., Goldowitz, D., & Mittleman, G. (2006). Sustained Attention in the Mouse: A Study of the Relationship With the Cerebellum: Behavioral Neuroscience Vol 120(2) Apr 2006, 477-481.
  • Mason, C. R., Hendrix, C. M., & Ebner, T. J. (2006). Purkinje Cells Signal Hand Shape and Grasp Force During Reach-to-Grasp in the Monkey: Journal of Neurophysiology Vol 95(1) Jan 2006, 144-158.
  • McKinstry, J. L., Edelman, G. M., & Krichmar, J. L. (2006). A cerebellar model for predictive motor control tested in a brain-based device: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 103(9) Feb 2006, 3387-3392.
  • Miall, R. C., Malkmus, M., & Robertson, E. M. (1996). Sensory prediction as a role for the cerebellum: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 466-467, 503-527.
  • Miyata, M., Kim, H.-T., Hashimoto, K., Lee, T.-K., Cho, S.-Y., Jiang, H., et al. (2001). Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta 4 mutant mice: European Journal of Neuroscience Vol 13(10) May 2001, 1945-1954.
  • Mori-Okamoto, J., & Okamoto, K. (1996). Further evidence for the involvement of nitric oxide in trans-ACPD-induced suppression of AMPA responses in cultured chick Purkinje neurons: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 467-468, 503-527.
  • Murzina, G. B. (2004). Mathematical Simulation of the Induction of Long-Term Depression in Cerebellar Purkinje Cells: Neuroscience and Behavioral Physiology Vol 34(2) Feb 2004, 115-121.
  • Nakazawa, K., Karachot, L., Nakabeppu, Y., & Yamamori, T. (1993). The conjunctive stimuli that cause long-term desensitization also predominantly induce c-Fos and Jun-B in cerebellar Purkinje cells: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 4(11) Nov 1993, 1275-1278.
  • Nakazawa, K., Mikawa, S., & Ito, M. (1997). Persistent phosphorylation parallels long-term desensitization of cerebellar Purkinje cell AMPA-type glutamate receptors: Learning & Memory Vol 3(6) Mar-Apr 1997, 578-591.
  • Nicholson, D. A. (2003). The development of olivocerebellar interactions: Implications for the ontogeny of eyeblink conditioning. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Nicholson, D. A., & Freeman, J. H., Jr. (2003). Developmental Changes in Evoked Purkinje Cell Complex Spike Responses: Journal of Neurophysiology Vol 90(4) Oct 2003, 2349-2357.
  • Nicholson, D. A., & Freeman, J. H., Jr. (2004). Developmental Changes in Eyeblink Conditioning and Simple Spike Activity in the Cerebellar Cortex: Developmental Psychobiology Vol 44(1) Jan 2004, 45-57.
  • Nishihara, E., Yoshida-Komiya, H., Chan, C.-S., Liao, L., Davis, R. L., O'Malley, B. W., et al. (2003). SRC-1 Null Mice Exhibit Moderate Motor Dysfunction and Delayed Development of Cerebellar Purkinje Cells: Journal of Neuroscience Vol 23(1) Jan 2003, 213-222.
  • Nolan, B. C. (2005). Neurobiological mechanisms of conditioned excitation and conditioned inhibition of the eyeblink response in rats. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Nolan, B. C., & Freeman, J. H., Jr. (2005). Purkinje Cell Loss by OX7-Saporin Impairs Excitatory and Inhibitory Eyeblink Conditioning: Behavioral Neuroscience Vol 119(1) Feb 2005, 190-201.
  • Nolan, B. C., & Freeman, J. H. (2006). Purkinje cell loss by OX7-saporin impairs acquisition and extinction of eyeblink conditioning: Learning & Memory Vol 13(3) May 2006, 359-365.
  • Norris, S. A., Greger, B., Hathaway, E. N., & Thach, W. T. (2004). Purkinje Cell Spike Firing in the Posterolateral Cerebellum: Correlation With Visual Stimulus, Oculomotor Response, and Error Feedback: Journal of Neurophysiology Vol 92(3) Sep 2004, 1867-1879.
  • Ohkawa, N., Hashimoto, K., Hino, T., Migishima, R., Yokoyama, M., Kano, M., et al. (2007). Motor discoordination of transgenic mice overexpressing a microtubule destabilizer, stathmin, specifically in Purkinje cells: Neuroscience Research Vol 59(1) Sep 2007, 93-100.
  • Ojakangas, C. L. (1993). Cerebellar purkinje cell activity during voluntary motor learning in the primate: Dissertation Abstracts International.
  • Ojakangas, C. L., & Ebner, T. J. (1994). Purkinje cell complex spike activity during voluntary motor learning: Relationship to kinematics: Journal of Neurophysiology Vol 72(6) Dec 1994, 2617-2630.
  • Okada, D. (1996). Nitric oxide is involved in cerebellar long-term depression: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 468-469, 503-527.
  • Oliver, P. L., Keays, D. A., & Davies, K. E. (2007). Behavioural characterisation of the robotic mouse mutant: Behavioural Brain Research Vol 181(2) Aug 2007, 239-247.
  • Paulin, M. G. (1996). Cerebellar theory out of control: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 470-471, 503-527.
  • Pedroarena, C. M., & Schwarz, C. (2003). Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons: Journal of Neurophysiology Vol 89(2) Feb 2003, 704-715.
  • Pekhletski, R., Gerlai, R., Overstreet, L. S., Huang, X.-P., Agopyan, N., Slater, N. T., et al. (1996). Impaired cerebellar synaptic plasticity and motor performance in mice lacking the mGluR4 subtype of metabotropic glutamate receptor: Journal of Neuroscience Vol 16(20) Oct 1996, 6364-6373.
  • Philipona, D., & Coenen, O. J. M. D. (2004). Model of granular layer encoding in the cerebellum: Neurocomputing: An International Journal Vol 58-60 2004, 575-580.
  • Pierce, D. R., Williams, D. K., & Light, K. E. (1999). Purkinje cell vulnerability to developmental ethanol exposure in the rat cerebellum: Alcoholism: Clinical and Experimental Research Vol 23(10) Oct 1999, 1650-1659.
  • Porras-Garcia, E., Cendelin, J., Dominguez-del-Toro, E., Vozeh, F., & Delgado-Garcia, J. M. (2005). Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice: European Journal of Neuroscience Vol 21(4) Feb 2005, 979-988.
  • Qian, N. (1995). Generalization and analysis of the Lisberger-Sejnowski VOR model: Neural Computation Vol 7(4) Jul 1995, 735-752.
  • Ramadoss, J., Lunde, E. R., Chen, W.-J. A., West, J. R., & Cudd, T. A. (2007). Temporal vulnerability of fetal cerebellar Purkinje cells to chronic binge alcohol exposure: Ovine model: Alcoholism: Clinical and Experimental Research Vol 31(10) Oct 2007, 1738-1745.
  • Ramadoss, J., Lunde, E. R., Pina, K. B., Chen, W.-J. A., & Cudd, T. A. (2007). All three trimester binge alcohol exposure causes fetal cerebellar Purkinje cell loss in the presence of maternal hypercapnea, acidemia, and normoxemia: Ovine model: Alcoholism: Clinical and Experimental Research Vol 31(7) Jul 2007, 1252-1258.
  • Rancz, E. A., & Hausser, M. (2006). Dendritic Calcium Spikes Are Tunable Triggers of Cannabinoid Release and Short-Term Synaptic Plasticity in Cerebellar Purkinje Neurons: Journal of Neuroscience Vol 26(20) May 2006, 5428-5437.
  • Raymond, J. L., & Lisberger, S. G. (1997). Multiple subclasses of purkinje cells in the primate floccular complex provide similar signals to guide learning in the vestibulo-ocular reflex: Learning & Memory Vol 3(6) Mar-Apr 1997, 503-518.
  • Richter, R. R. (2000). Correlated anatomical and behavioral study of locomotion in shaker mutant rats. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Roberts, P. D., McCollum, G., & Holly, J. E. (1996). Cerebellar rhythms: Exploring another metaphor: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 471-472, 503-527.
  • Robertson, L. T. (1993). The Cerebellum: The Structural and Functional Bases of Motor Performance: PsycCRITIQUES Vol 38 (10), Oct, 1993.
  • Roegge, C. S., Morris, J. R., Villareal, S., Wang, V. C., Powers, B. E., Klintsova, A. Y., et al. (2006). Purkinje cell and cerebellar effects following developmental exposure to PCBs and/or MeHg: Neurotoxicology and Teratology Vol 28(1) Jan-Feb 2006, 74-85.
  • Roitman, A. V., Pasalar, S., Johnson, M. T. V., & Ebner, T. J. (2005). Position, Direction of Movement, and Speed Tuning of Cerebellar Purkinje Cells during Circular Manual Tracking in Monkey: Journal of Neuroscience Vol 25(40) Oct 2005, 9244-9257.
  • Sajdel-Sulkowska, E. M., Nguon, K., Sulkowski, Z. L., Rosen, G. D., & Baxter, M. G. (2005). Purkinje cell loss accompanies motor impairment in rats developing at altered gravity: Neuroreport: For Rapid Communication of Neuroscience Research Vol 16(18) Dec 2005, 2037-2040.
  • Sawada, K., Kawano, M., Tsuji, H., Sakata-Haga, H., Hisano, S., & Fukui, Y. (2003). Over-expression of corticotropin-releasing factor mRNA in inferior olivary neurons of rolling mouse Nagoya: Molecular Brain Research Vol 117(2) Oct 2003, 190-195.
  • Sawtell, N. B., Williams, A., & Bell, C. C. (2007). Central control of dendritic spikes shapes the responses of purkinje-like cells through spike timing-dependent synaptic plasticity: Journal of Neuroscience Vol 27(7) Feb 2007, 1552-1565.
  • Schmahmann, J. D. (1996). Dysmetria of thought: Correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 472-473, 503-527.
  • Schmolesky, M. T., Weber, J. T., Zeeuw, C. I. D., & Hansel, C. (2002). The making of a complex spike: Ionic composition and plasticity. New York, NY: New York Academy of Sciences.
  • Schonewille, M., Khosrovani, S., Winkelman, B. H. J., Hoebeek, F. E., De Jeu, M. T. G., Larsen, I. M., et al. (2006). Purkinje cells in awake behaving animals operate at the upstate membrane potential: Nature Neuroscience Vol 9(4) Apr 2006, 459-461.
  • Schreurs, B. G., & Alkon, D. L. (1993). Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning: Brain Research Vol 631(2) Dec 1993, 235-240.
  • Schreurs, B. G., Gusev, P. A., Tomsic, D., Alkon, D. L., & Shi, T. (1998). Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI: Journal of Neuroscience Vol 18(14) Jul 1998, 5498-5507.
  • Schreurs, B. G., Oh, M. M., & Alkon, D. L. (1996). Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice: Journal of Neurophysiology Vol 75(3) Mar 1996, 1051-1060.
  • Seeds, N. W., Williams, B. L., & Bickford, P. C. (1995). Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning: Science Vol 270(5244) Dec 1995, 1992-1994.
  • Serinagaoglu, Y. (2007). Analysis of Pcp-2/l7 gene expression and function. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Servais, L., Bearzatto, B., Delvaux, V., Noel, E., Leach, R., Brasseur, M., et al. (2005). Effect of chronic ethanol ingestion on Purkinje and Golgi cell firing in vivo and on motor coordination in mice: Brain Research Vol 1055(1-2) Sep 2005, 171-179.
  • Servais, L., Hourez, R., Bearzatto, B., Gall, D., Schiffmann, S. N., & Cheron, G. (2007). Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 104(23) Jun 2007, 6858-6863.
  • Shinmei, Y., Yamanobe, T., Fukushima, J., & Fukushima, K. (2002). Purkinje cells of the cerebellar dorsal vermis: Simple-spike activity during pursuit and passive whole-body rotation: Journal of Neurophysiology Vol 87(4) Apr 2002, 1836-1849.
  • Sillitoe, R. V., Hulliger, M., Dyck, R., & Hawkes, R. (2003). Antigenic compartmentation of the cat cerebellar cortex: Brain Research Vol 977(1) Jul 2003, 1-15.
  • Simpson, J. I., Belton, T., Suh, M., & Winkelman, B. (2002). Complex spike activity in the flocculus signals more than the eye can see. New York, NY: New York Academy of Sciences.
  • Soetedjo, R., & Fuchs, A. F. (2006). Complex Spike Activity of Purkinje Cells in the Oculomotor Vermis during Behavioral Adaptation of Monkey Saccades: Journal of Neuroscience Vol 26(29) Jul 2006, 7741-7755.
  • Steuber, V., & Willshaw, D. (2004). A Biophysical Model of Synaptic Delay Learning and Temporal Pattern Recognition in a Cerebellar Purkinje Cell: Journal of Computational Neuroscience Vol 17(2) Sep-Oct 2004, 149-164.
  • Sugihara, I., & Shinoda, Y. (2004). Molecular, Topographic, and Functional Organization of the Cerebellar Cortex: A Study with Combined Aldolase C and Olivocerebellar Labeling: Journal of Neuroscience Vol 24(40) Oct 2004, 8771-8785.
  • Suh, M., Leung, H. C., & Kettner, R. E. (2000). Cerebellar flocculus and ventral paraflocculus Purkinje cell activity during predictive and visually driven pursuit in monkey: Journal of Neurophysiology Vol 84(4) Oct 2000, 1835-1850.
  • Sultan, F., Heck, D., & Bekkering, H. (1996). How to link the specificity of cerebellar anatomy to motor learning? : Behavioral and Brain Sciences Vol 19(3) Sep 1996, 474, 503-527.
  • Summavielle, T., Alves, C. J., Monteiro, P. R. R., & Tavares, M. A. (2004). Abnormal Immunoreactivity to Serotonin in Cerebellar Purkinje Cells after Neonatal Cocaine Exposure. New York, NY: New York Academy of Sciences.
  • Supple, W. F. (1993). Hypothalamic modulation of Purkinje cell activity in the anterior cerebellar vermis: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 4(7) Jul 1993, 979-982.
  • Supple, W. F., Sebastiani, L., & Kapp, B. S. (1993). Purkinje cell responses in the anterior cerebellar vermis during Pavlovian fear conditioning in the rabbit: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 4(7) Jul 1993, 975-978.
  • Swinnen, S. P., Walter, C. B., & Dounskaia, N. (1996). We know a lot about the cerebellum, but do we know what motor learning is? : Behavioral and Brain Sciences Vol 19(3) Sep 1996, 474-475, 503-527.
  • Thier, P., Dicke, P. W., Haas, R., Thielert, C.-D., & Catz, N. (2002). The role of the oculomotor vermis in the control of saccadic eye movements. New York, NY: New York Academy of Sciences.
  • Tracy, J. A., & Steinmetz, J. E. (1998). Purkinje cell responses to pontine stimulation CS during rabbit eyeblink conditioning: Physiology & Behavior Vol 65(2) Nov 1998, 381-386.
  • Tran, K. D., Smutzer, G. S., Doty, R. L., & Arnold, S. E. (1998). Reduced Purkinje cell size in the cerebellar vermis of elderly patients with schizophrenia: American Journal of Psychiatry Vol 155(9) Sep 1998, 1288-1290.
  • Tsuchiya, K., Oda, T., Yoshida, M., Sasaki, H., Haga, C., Okino, H., et al. (2005). Degeneration of the inferior olive in spinocerebellar ataxia 6 may depend on disease duration: Report of two autopsy cases and statistical analysis of autopsy cases reported to date: Neuropathology Vol 25(2) Jun 2005, 125-135.
  • Uemura, T., Kakizawa, S., Yamasaki, M., Sakimura, K., Watanabe, M., Iino, M., et al. (2007). Regulation of long-term depression and climbing fiber territory by glutamate receptor delta 2 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells: Journal of Neuroscience Vol 27(44) Oct 2007, 12096-12108.
  • Ulupinar, E., Yucel, F., & Ortug, G. (2006). The effects of prenatal stress on the Purkinje cell neurogenesis: Neurotoxicology and Teratology Vol 28(1) Jan-Feb 2006, 86-94.
  • van Beugen, B. J., Nagaraja, R. Y., & Hansel, C. (2006). Climbing Fiber-Evoked Endocannabinoid Signaling Heterosynaptically Suppresses Presynaptic Cerebellar Long-Term Potentiation: Journal of Neuroscience Vol 26(32) Aug 2006, 8289-8294.
  • van Donkelaar, P. (1996). Sensorimotor learning in structures "upstream" from the cerebellum: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 477-478, 503-527.
  • Verschure, P. F. M. J., & Mintz, M. (2001). A real-time model of the cerebellar circuitry underlying classical conditioning: A combined simulation and robotics study: Neurocomputing: An International Journal Vol 38-40 Jun 2001, 1019-1024.
  • Vincent, S. R. (1996). Nitric oxide and synaptic plasticity: NO news from the cerebellum: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 362-367, 503-527.
  • Vincent, S. R. (1996). NO more news from the cerebellum: Behavioral and Brain Sciences Vol 19(3) Sep 1996, 490-492, 503-527.
  • Voicu, H., & Mauk, M. D. (2006). Parametric analysis of cerebellar LTD in eyelid conditioning: Neurocomputing: An International Journal Vol 69(10-12) Jun 2006, 1187-1190.
  • Vozeh, F., Cendelin, J., Stenglova, V., Barcal, J., & Zahlava, J. (2001). The development of spatial learning in a model of olivocerebellar degeneration: Homeostasis in Health and Disease Vol 41(1-2) Nov 2001, 64-66.
  • Wang, Y., Jeng, C.-H., Lin, J.-C., & Wang, J.-Y. (1996). Serotonin modulates ethanol-induced depression in cerebellar Purkinje neurons: Alcoholism: Clinical and Experimental Research Vol 20(7) Oct 1996, 1229-1236.
  • Welsh, J. P., Lang, E. J., Sugihara, I., & Llinas, R. (1995). Dynamic organization of motor control within the olivocerebellar system: Nature Vol 374(6521) Mar 1995, 453-457.
  • Wylie, D. R. W., & Frost, B. J. (1999). Complex spike activity of Purkinje cells in the ventral uvula and nodulus of pigeons in response to translational optic flow: Journal of Neurophysiology Vol 81(1) Jan 1999, 256-266.
  • Yamamoto, K., Kobayashi, Y., Takemura, A., Kawano, K., & Kawato, M. (2002). Cerebellar plasticity and the ocular following response. New York, NY: New York Academy of Sciences.
  • Yamasaki, M., Hashimoto, K., & Kano, M. (2006). Miniature Synaptic Events Elicited by Presynaptic Ca-super(2+) Rise are Selectively Suppressed by Cannabinoid Receptor Activation in Cerebellar Purkinje Cells: Journal of Neuroscience Vol 26(1) Jan 2006, 86-95.
  • Yamashita, T., Miyagi, Y., Ono, M., Ito, H., Watanabe, K., Sonoda, T., et al. (2005). Identification and characterization of a novel Delphilin variant with an alternative N-terminus: Molecular Brain Research Vol 141(1) Nov 2005, 83-94.
  • Yanagihara, D., & Udo, M. (1994). Climbing fiber responses in cerebellar vermal Purkinje cells during perturbed locomotion in decerebrate cats: Neuroscience Research Vol 19(2) Mar 1994, 245-248.
  • Yeo, C. H., & Hesslow, G. (1998). Cerebellum and conditioned reflexes: Trends in Cognitive Sciences Vol 2(9) Sep 1998, 322-330.
  • Yoshida, T., Funabiki, K., & Hirano, T. (2007). Increased occurrence of climbing fiber inputs to the cerebellar flocculus in a mutant mouse is correlated with the timing delay of optokinetic response: European Journal of Neuroscience Vol 25(5) Mar 2007, 1467-1474.
  • Yung, W.-H., Leung, P.-S., Ng, S. S. M., Zhang, J., Chan, S. C. Y., & Chow, B. K. C. (2001). Secretin facilitates GABA transmission in the cerebellum: Journal of Neuroscience Vol 21(18) Sep 2001, 7063-7068.




This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki