Wikia

Psychology Wiki

Polygyny threshold model

Talk0
34,135pages on
this wiki
Revision as of 10:09, October 22, 2011 by Dr Joe Kiff (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
This article is in need of attention from a psychologist/academic expert on the subject.
Please help recruit one, or improve this page yourself if you are qualified.
This banner appears on articles that are weak and whose contents should be approached with academic caution
.
File:Polyganythresholdmodel 1.svg

The polygyny threshold model is an explanation of polygyny, the mating of one male of a species with multiple females. The model shows how females may gain a higher level of biological fitness by mating with a male who already has a mate. The female makes this choice despite other surrounding males because the choice male's territory, food supply, or other important characteristics are better than those of his competitors, even with two females on the territory.

Graphical depictionEdit

The graphical depiction of the model presented in Gordon H. Orians' 1969 paper is often used to explain the concept. The graph shows two curves on a graph of biological fitness versus environmental quality. Environmental quality refers to the quality of the male's territory. The left curve, labeled monogamous, is the perceived biological fitness for a female entering into a monogamous relationship with a given male. The right curve, labeled bigamous, shows the fitness of the same female entering into a relationship with a different male who already has one female mate but who has defended more resources. The second curve is roughly the first curve shifted to the right some amount. The given shapes of the curve will change with other intrinsic factors like genetic quality and male paternal investment. It is important to note that the designation "female" and "male" here are oft accurate; however, in some mating systems the operational sex ratio leans towards females, who then have motivation to engage in resource defence polyandry (provided the requirements of economic defendability are met).

The intersection of the vertical dotted line on the left with the monogamous curve indicates the biological fitness of a female who chooses a monogamous male with a lower environmental quality. The intersection of the vertical dotted line on the right with the bigamous curve indicates the biological fitness of a female who enters into a bigamous relationship with the male of a higher environmental quality. The difference between these two intersection points, labeled PT, is the polygyny threshold. It is the gain of environmental quality for the female when she chooses the bigynous relationship and thus the minimum environmental quality difference necessary to make bigyny beneficial for the female. Also important is the vertical line drawn from the intersection of the line with the bigyny curve to the monogyny curve above. This represents the fitness gain of a female who chooses bigyny over monogyny due to, here, resource holding differences.

Orians predicted that animals exhibiting resource defence polygyny would fit to this model when living in successive habitats, where territory quality is very variable. Using the territory quality to decide whether to pursue a monogamous or polygynous mating relationship. This is shown in the red-winged blackbird by Pribil and Searcy (2001). Female red-winged blackbirds prefer to mate with males with territories over water and also unmated males. The females were given a choice between unmated males or previously mated males with the superior territories over water. In 12 out of 14 trials (86%) females choice the already mated male with the superior territory.[1]

See alsoEdit



References & BibliographyEdit

ReferencesEdit

  1. Pribil, Searcy (07). Experimental confirmation of the polygyny threshold model for red-winged blackbirds. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES 268 (1476): 1643–1646.
  • Orians, G. H. (1969). On the Evolution of Mating Systems in Birds and Mammals. The American Naturalist, 103(934), 589-603.


Key textsEdit

BooksEdit

PapersEdit

Additional materialEdit

BooksEdit

PapersEdit

External linksEdit

This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki