Psychology Wiki
Advertisement

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


A phosphatase is an enzyme that removes a phosphate group from its substrate by hydrolysing phosphoric acid monoesters into a phosphate ion and a molecule with a free hydroxyl group (see dephosphorylation). This action is directly opposite to that of phosphorylases and kinases, which attach phosphate groups to their substrates by using energetic molecules like ATP. A common phosphatase in many organisms is alkaline phosphatase.

Phosphatases can be categorised into two main categories: Cysteine-dependent Phosphatases (CDPs) and metallo-phosphatases (which are dependent on metal ions in their active sites for activity).

Mechanism

CDPs catalyse the hydrolysis of a phosphoester bond via a phospho-cysteine intermediate [1].

File:Phosmech.png

Mechanism of Tyrosine dephosphorylation by a CDP

The free cysteine nucleophile forms a bond with the phosphorus atom of the phosphate moiety, and the P-O bond linking the phosphate group to the tyrosine is protonated, either by a suitably positioned acidic amino acid residue (Asp in the diagram below) or a water molecule. The phospho-cysteine intermediate is then hydrolysed by another water molecule, thus regenerating the active site for another dephosphorylation reaction.

Metallo-phosphatases (eg PP2C) co-ordinate 2 catalytically essential metal ions within their active site. There is currently some confusion of the identity of these metal ions, as successive attempts to identify them yield different answers. There is currently evidence that these metals could be Magnesium, Manganese, Iron, Zinc, or any combination thereof. It is thought that a hydroxyl ion bridging the two metal ions takes part in nucleophilic attack on the phosphorus ion.

Sub-types

Phosphatases can be subdivided based upon their substrate specificity.

Class Example Substrate Reference
Tyrosine-specific phosphatases PTP1B Phospho-Tyrosine [2]
Serine/Threonine specific phosphatases PP2C Phospho-Serine/Threonine [3]
Dual Specificity Phosphatases VHR Phospho-Tyrosine/Serine/Threonine [4]
Histidine Phosphatase PHP Phospho-Histidine [5]
Lipid Phosphatase PTEN Phosphatidyl-Inositol-3,4,5-Triphosphate [6]

Physiological Relevance

Phosphatases act in opposition to kinases/phosphorylases, which add phosphate groups to proteins. The addition of a phosphate group may activate or de-activate an enzyme (e.g., Kinase signalling pathways[7] ) or enable a protein-protein interaction to occur (e.g., SH3 domains [8]); therefore phosphatases are integral to many signal transduction pathways. It should be noted that phosphate addition and removal do not necessarily correspond to enzyme activation or inhibition, and that several enzymes have separate phosphorylation sites for activating or inhibiting functional regulation. CDK, for example, can be either activated or deactivated depending on the specific amino acid residue being phosphorylated. Phosphates are important in signal transduction because they regulate the proteins to which they are attached. To reverse the regulatory effect, the phosphate is removed. This occurs on its own by hydrolysis, or is mediated by protein phosphatases.


Protein Phosphatases

Serine/threonine-specific protein phosphatases

Serine and threonine phosphates are stable under physiological conditions, so a phosphatase has to remove the phosphate to reverse the regulation. There are four known groups:

  1. PP1 (α, β, γ1, γ2)
  2. PP2A
  3. PP2B (AKA calcineurin)
  4. PP2C
  5. PP4
  6. PP5

The first three have sequence homology in the catalytic domain, but differ in substrate specifity.

Ser/Thr-specific protein phosphatases are regulated by their location within the cell and by specific inhibitor proteins.


Phosphatases and bipolar disorder

Phosphates and depression

See also

References

  1. Barford, D. Molecular mechanisms of the protein serine/threonine phosphatases, (1996) Trends Bioch Sci,21, 11, pp407
  2. Zhong-Yin Zhang, PROTEIN TYROSINE PHOSPHATASES: Structure and Function, Substrate Specificity, and Inhibitor Development (2002), Annual Review of Pharmacology and Toxicology,42, pp209
  3. Mumby, MC & Walter, G. Protein Serine/Threonine Phosphatases: Structure, Regulation, and Functions in Cell Growth (1993) Physiological Reviews,73,pp673
  4. Camps, S et al, Dual specificity phosphatases: a gene family for control of MAP kinase function. (2000) FASEB J,1,pp16
  5. Baumner, H et al, Expression of Protein Histidine Phosphatase in Escherichia coli, Purification, and Determination of Enzyme Activity. (2006), Methods Mol Biol, 365, pp247
  6. Maehama, T. et al, The tumour suppressor PTEN: involvement of a tumour suppressor candidate protein in PTEN turnover (2004) Biochem. Soc. Trans. 32, pp343
  7. Seger & Krebs,The MAPK Signalling cascade, FASEB J,9,pp726
  8. Ladbury, JE, Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction,(2007), Acta Cryst D,62,pp26
  • Aalbers, C., Emsley, R. A., & Taljaard, J. J. (1990). Serum phosphate and anxiety in major depression: Psychiatry Research Vol 31(2) Feb 1990, 217.
  • Agam, G., & Livne, A. (1989). Inositol-1 phosphatase of human erythrocytes is inhibited by therapeutic lithium concentrations: Psychiatry Research Vol 27(2) Feb 1989, 217-224.
  • Agam, G., & Shaltiel, G. (2003). Possible role of 3'(2')-phosphoadenosine-5'-phosphate phosphatase in the etiology and therapy of bipolar disorder: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 27(5) Aug 2003, 723-727.
  • Agam, G., Shamir, A., Shaltiel, G., & Greenberg, M. L. (2002). Myo-inositol-1-phosphate (MIP) synthase: A possible new target for antibipolar drugs: Bipolar Disorders Vol 4(Suppl1) Sep 2002, 15-20.
  • Alagaramy, S., Rouse, S. T., Junge, C., Hubert, G. W., Gutman, D., Smith, Y., et al. (2002). NMDA-induced phosphorylation and regulation of mGluR5: Pharmacology, Biochemistry and Behavior Vol 73(2) Sep 2002, 299-306.
  • Albouz, S., le Saux, F., Wenger, D., Hauw, J. J., & et al. (1986). Modifications of sphingomyelin and phosphatidylcholine metabolism by tricyclic antidepressants and phenothiazines: Life Sciences Vol 38(4) Jan 1986, 357-363.
  • Alexander, D. R., Deeb, M., Bitar, F., & Antun, F. (1986). Sodium-potassium, magnesium, and calcium ATPase activities in erythrocyte membranes from manic-depressive patients responding to lithium: Biological Psychiatry Vol 21(11) Sep 1986, 997-1007.
  • Amador, F. C., Henriques, A. G., da Cruz e Silva, O. A. B., & da Cruz e Silva, E. F. (2004). Monitoring protein phosphatase 1 isoform levels as a marker for cellular stress: Neurotoxicology and Teratology Vol 26(3) May-Jun 2004, 387-395.
  • Arai, Y., Ijuin, T., Itoh, M., Takenawa, T., Takashima, S., & Becker, L. E. (2001). Developmental changes of synaptojanin expression in the human cerebrum and cerebellum: Developmental Brain Research Vol 129(1) Jul 2001, 1-9.
  • Asanuma, N., & Nomura, H. (1982). Histochemical localization of adenylate cyclase and phosphodiesterase activities in the foliate papillae of the rabbit: II. Electron microscope observations: Chemical Senses Vol 7(1) 1982, 1-9.
  • Atack, J. R., Levine, J., & Belmaker, R. H. (1998). Cerebrospinal fluid inositol monophosphatase: Elevated activity in depression and neuroleptic-treated schizophrenia: Biological Psychiatry Vol 44(6) Sep 1998, 433-437.
  • Atack, J. R., & Schapiro, M. B. (2002). Inositol monophosphatase activity in normal, Down syndrome and dementia of the Alzheimer type CSF: Neurobiology of Aging Vol 23(3) May-Jun 2002, 389-396.
  • Balthazart, J., Baillien, M., & Ball, G. F. (2005). Interactions between kinases and phosphatases in the rapid control of brain aromatase: Journal of Neuroendocrinology Vol 17(9) Sep 2005, 553-559.
  • Beauge, F., Fleuret-Balter, C., Nordmann, J., & Nordmann, R. (1984). Brain membrane sensitivity to ethanol during development of functional tolerance to ethanol in rats: Alcoholism: Clinical and Experimental Research Vol 8(2) Mar-Apr 1984, 167-171.
  • Belmaker, R. H., Bersudsky, Y., Benjamin, J., Agam, G., Levine, J., & Kofman, O. (1995). Manipulation of inositol-linked second messenger systems as a therapeutic strategy in psychiatry. New York, NY: Raven Press.
  • Benavidez, E., & Arce, A. (2002). Effects of phosphorylation and cytoskeleton-affecting reagents on GABA-sub(A ) receptor recruitment into synaptosomes following acute stress: Pharmacology, Biochemistry and Behavior Vol 72(3) Jun 2002, 497-506.
  • Bennett, P. C., Moutsoulas, P., Lawen, A., Perini, E., & Ng, K. T. (2003). Novel effects on memory observed following unilateral intracranial administration of okadaic acid, cyclosporin A, FK506 and: Brain Research Vol 988(1-2) Oct 2003, 56-68.
  • Bennett, P. C., Schmidt, L., Lawen, A., Moutsoulas, P., & Ng, K. T. (2002). Cyclosporin A, FK506 and rapamycin produce multiple, temporally distinct, effects on memory following single-trial, passive avoidance training in the chick: Brain Research Vol 927(2) Feb 2002, 180-194.
  • Berman, J. R., Berman, L. A., Lin, H., Flaherty, E., Lahey, N., Goldstein, I., et al. (2001). Effect of sildenafil on subjective and physiologic parameters of the female sexual response in women with sexual arousal disorder: Journal of Sex & Marital Therapy Vol 27(5) Oct-Dec 2001, 411-420.
  • Biber, K., Walden, J., Gebicke-Harter, P., & Berger, M. (1996). Carbamazepine inhibits the potentiation by adenosine analogues of agonist induced inositolphosphate formation in hippocampal astrocyte cultures: Biological Psychiatry Vol 40(7) Oct 1996, 563-567.
  • Bissuel, Y., Mecher, G., Mehier, H., Dalery, J., & et al. (1993). Interest of cerebral 31P nuclear magnetic resonance (RMN) spectroscopy in senile dementia Alzheimer's type: L'Encephale Vol 19(1) Jan-Feb 1993, 29-35.
  • Bliudzin, Y. A., & Zuber, V. L. (1982). Composition of fatty acids of glycerophospholipids in the brain of growing rats during demyelinization: Nervnaya Sistema Vol 1982 (23) 1982, 125-129.
  • Bolis, A., Coviello, S., Bussini, S., Dina, G., Pardini, C., Previtali, S. C., et al. (2005). Loss of Mtmr2 Phosphatase in Schwann Cells But Not in Motor Neurons Causes Charcot-Marie-Tooth Type 4B1 Neuropathy with Myelin Outfoldings: Journal of Neuroscience Vol 25(37) Sep 2005, 8567-8577.
  • Bordelon, J. R., Smith, Y., Nairn, A. C., Colbran, R. J., Greengard, P., & Muly, E. C. (2005). Differential localization of protein phosphatase-1alpha , beta and gamma 1 in primate prefrontal cortex: Cerebral Cortex Vol 15(12) Dec 2005, 1928-1937.
  • Bothmer, J., Markerink, M., & Jolles, J. (1994). Evidence for a selective decrease in Type 1 phosphatidylinositol kinase activity in brains of patients with Alzheimer's disease: Dementia Vol 5(1) Jan-Feb 1994, 6-11.
  • Burton, C. K., Ho, I. K., & Hoskins, B. (1991). Effect of cyclo(Leu-Gly) on cyclic GMP-phosphodiesterase activity changes associated with development of tolerance to morphine-induced antinociception, catalepsy, respiratory depression and mydriasis: Journal of Pharmacology and Experimental Therapeutics Vol 258(3) Sep 1991, 871-876.
  • Cannich, A., Wotjak, C. T., Kamprath, K., Hermann, H., Lutz, B., & Marsicano, G. (2004). CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice: Learning & Memory Vol 11(5) Sep-Oct 2004, 625-632.
  • Cheng, G., & Randic, M. (2003). Involvement of intracellular calcium and protein phosphatases in long-term depression of A-fiber-mediated primary afferent neurotransmission: Developmental Brain Research Vol 144(1) Aug 2003, 73-82.
  • Chiu, L. P., & Rimon, R. (1988). Vanadium in psychiatry: Human Psychopharmacology: Clinical and Experimental Vol 3(3) Sep 1988, 159-169.
  • Choi, S. J., Derman, R. M., & Lee, K. S. (1981). Bipolar affective disorder, lithium carbonate and Ca-super(++ ) ATPase: Journal of Affective Disorders Vol 3(2) Jun 1981, 77-79.
  • Coburn, S. P., Mahuren, J. D., & Schaltenbrand, W. E. (1991). Increased activity of pyridoxal kinase in tongue in Down's syndrome: Journal of Mental Deficiency Research Vol 35(6) Dec 1991, 543-547.
  • Cook, C. N., Hejna, M. J., Magnuson, D. J., & Lee, J. M. (2005). Expression of calcipressin1, an inhibitor of the phosphatase calcineurin, is altered with aging and Alzheimer's disease: Journal of Alzheimer's Disease Vol 8(1) 2005, 63-73.
  • Cooke, S. F. (2002). Protein phosphatases: A means of forgetting: Trends in Neurosciences Vol 25(12) Dec 2002, 606-607.
  • Cornelius, J. R., Payton, J. B., & McGonigle, J. J. (1985). Overanxious disorder with FDPase deficiency and developmental disability: Psychosomatics: Journal of Consultation Liaison Psychiatry Vol 26(8) Aug 1985, 680-682.
  • Csutora, P., Karsai, A., Nagy, T., Vas, B., Kovacs, G. L., Rideg, O., et al. (2006). Lithium induces phosphoglucomutase activity in various tissues of rats and in bipolar patients: International Journal of Neuropsychopharmacology Vol 9(5) Oct 2006, 613-619.
  • DasGupta, K., & Weiler, M. H. (1992). Age-related differences in the phosphoinositide system in rat neostriatum: Neuropsychopharmacology Vol 7(2) Sep 1992, 163-165.
  • Delgado, J. Y., Coba, M., Anderson, C. N. G., Thompson, K. R., Gray, E. E., Heusner, C. L., et al. (2007). NMDA receptor activation dephosphorylates AMPA receptor glutamate receptor 1 subunits at threonine 840: Journal of Neuroscience Vol 27(48) Nov 2007, 13210-13221.
  • Detel, D., Baticic, L., & Varljen, J. (2008). The influence of age on intestinal dipeptidyl peptidase IV (DPP IV/CD26), disaccharidases, and alkaline phosphatase enzyme activity in C57Bl/6 mice: Experimental Aging Research Vol 34(1) Jan 2008, 49-62.
  • Dineley, K. T., Hogan, D., Zhang, W.-R., & Taglialatela, G. (2007). Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice: Neurobiology of Learning and Memory Vol 88(2) Sep 2007, 217-224.
  • Dogan Erol, D., & Gecici, O. (2006). Central anticholinergic syndrome secondary to atropine treatment of organophosphate poisoning: Psychogeriatrics Vol 6(3) Sep 2006, 145-146.
  • Dorevitch, A., Lerner, V., Shalfman, M., & Kalian, M. (1997). Lack of effect of vitamin E on serum creatine phosphokinase in patients with long-term tardive dyskinesia: International Clinical Psychopharmacology Vol 12(3) May 1997, 171-173.
  • Dutschke, K., Nitsch, R. M., & Hoyer, S. (1994). Short-term mental activation accelerates the age-related decline of high-energy phosphates in rat cerebral cortex: Archives of Gerontology and Geriatrics Vol 19(1) Jul-Aug 1994, 43-51.
  • Eastwood, S. L., Burnet, P. W. J., & Harrison, P. J. (2005). Decreased Hippocampal Expression of the Susceptibility Gene PPP3CC and Other Calcineurin Subunits in Schizophrenia: Biological Psychiatry Vol 57(7) Apr 2005, 702-710.
  • Eastwood, S. L., Salih, T., & Harrison, P. J. (2005). Differential expression of calcineurin A subunit mRNA isoforms during rat hippocampal and cerebellar development: European Journal of Neuroscience Vol 22(12) Dec 2005, 3017-3024.
  • El-Mallakh, R. S., Barrett, J. L., & Wyatt, R. J. (1993). The Na,K-ATPase hypothesis for bipolar disorder: Implications of normal development: Journal of Child and Adolescent Psychopharmacology Vol 3(1) Spr 1993, 37-52.
  • El-Mallakh, R. S., & Li, R. (1993). Is the Na-super(+)-K-super(+)-ATPase the link between phosphoinositide metabolism and bipolar disorder? : Journal of Neuropsychiatry & Clinical Neurosciences Vol 5(4) Fal 1993, 361-368.
  • Ferrani-Kile, K., Randall, P. K., & Leslie, S. W. (2003). Acute ethanol affects phosphorylation state of the NMDA receptor complex: Implication of tyrosine phosphatases and protein kinase A: Molecular Brain Research Vol 115(1) Jul 2003, 78-86.
  • Fisher, S. E., Duffy, L., & Atkinson, M. (1986). Selective fetal malnutrition: Effect of acute and chronic ethanol exposure upon rat placental Na,K-ATPase activity: Alcoholism: Clinical and Experimental Research Vol 10(2) Apr 1986, 150-153.
  • Fliorov, M. A., Borovitskaya, A. E., & Tolstukhina, T. I. (1982). Action of "A" phospholipase on the ATPase system of subcellular fractions of the brain: Nervnaya Sistema Vol 1982 (23) 1982, 91-95.
  • Gabra, B. H., Bailey, C. P., Kelly, E., Sanders, A. V., Henderson, G., Smith, F. L., et al. (2007). Evidence for an important role of protein phosphatases in the mechanism of morphine tolerance: Brain Research Vol 1159 Jul 2007, 86-93.
  • Gann, H., Ebersholdt, M., Adamovic, K., & van Calker, D. (1999). Agonist-stimulated Ca-super(2+ ) response in neutrophils from patients with primary alcoholism and alcoholized healthy subjects: Psychiatry Research Vol 89(3) Dec 1999, 189-199.
  • Gattaz, W. F., Cramer, H., & Beckmann, H. (1983). Low CSF concentrations of cyclic GMP in schizophrenia: British Journal of Psychiatry Vol 142 Mar 1983, 288-291.
  • Genoux, D., Haditsch, U., Knobloch, M., Michalon, A., Storm, D., & Mansuy, I. M. (2002). Protein phosphatase 1 is a molecular constraint on learning and memory: Nature Vol 418(6901) Aug 2002, 970-975.
  • Ghanbari-Niaki, A., Desy, F., & Lavoie, J.-M. (1999). Effects of phosphate injection on metabolic and hormonal responses to exercise in fructose-injected rats: Physiology & Behavior Vol 67(5) Nov 1999, 747-752.
  • Gilbert, J. C., Pertwee, R. G., & Wyllie, M. G. (1977). Effects of !D-9-tetrahyrdocannabinol and cannabidiol on a Mg-super(2+)-ATPase of synaptic vesicles prepared from rat cerebral cortex: British Journal of Pharmacology Vol 59(4) Apr 1977, 599-601.
  • Giulian, D., Iwanij, V., Dean, G., & Drummond, R. J. (1983). Localization of 2',3'-cyclic nucleotide-3'-phosphohydrolase within the vertebrate retina: Brain Research Vol 265(2) Apr 1983, 217-225.
  • Gong, C.-X., Shaikh, S., Grundke-Iqbal, I., & Iqbal, K. (1996). Inhibition of protein phosphatase-2B (calcineurin) activity towards Alzheimer abnormally phosphorylated tau by neuroleptics: Brain Research Vol 741(1-2) Nov 1996, 95-102.
  • Griffiths, W. J., Jr. (1956). Diet selections of rats run to exhaustion on a treadmill: Journal of Comparative and Physiological Psychology Vol 49(4) Aug 1956, 334-335.
  • Hajek, I., Sykova, E., Sedman, G., & Ng, K. T. (1994). Na-super(+), K-super(+)-ATPase activity in young chicks after taste stimulation: Brain Research Bulletin Vol 33(1) 1994, 87-91.
  • Haque, N., Gong, C.-X., Sengupta, A., Iqbal, K., & Grundke-Iqbal, I. (2004). Regulation of microtubule-associated proteins, protein kinases and protein phosphatases during differentiation of SY5Y cells: Molecular Brain Research Vol 129(1-2) Oct 2004, 163-170.
  • Hategan, D., & Volanschi, D. (1985). Sodium-potassium stimulated adenosine triphosphatase and postnatal ontogenetic development of epileptic reactivity in rabbit motor cortex: Revue Roumaine de Neurologie et Psychiatrie Vol 23(3) Jul-Sep 1985, 169-175.
  • Hauger, R. L., Olivares-Reyes, J. A., Braun, S., Catt, K. J., & Dautzenberg, F. M. (2003). Mediation of Corticotropin Releasing Factor Type 1 Receptor Phosphorylation and Desensitization by Protein Kinase C: A Possible Role in Stress Adaptation: Journal of Pharmacology and Experimental Therapeutics Vol 306(2) Aug 2003, 794-803.
  • Havekes, R., Nijholt, I. M., Luiten, P. G. M., & Van der Zee, E. A. (2006). Differential involvement of hippocampal calcineurin during learning and reversal learning in a Y-maze task: Learning & Memory Vol 13(6) Nov-Dec 2006, 753-759.
  • Hoeffer, C. A., Dey, A., Sachan, N., Wong, H., Patterson, R. J., Shelton, J. M., et al. (2007). The Down syndrome critical region protein RCAN1 regulates long-term potentiation and memory via inhibition of phosphatase signaling: Journal of Neuroscience Vol 27(48) Nov 2007, 13161-13172.
  • Hsu, K.-S., Huang, C.-C., Liang, Y.-C., Wu, H.-M., Chen, Y.-L., Lo, S.-W., et al. (2002). Alterations in the Balance of Protein Kinase and Phosphatase Activities and Age-Related Impairments of Synaptic Transmission and Long-Term Potentiation: Hippocampus Vol 12(6) 2002, 787-802.
  • Hu, J.-X., Yu, L., Shi, Y.-Y., Zhao, X.-Z., Meng, J.-W., He, G., et al. (2007). An association study between PPP1R1B gene and schizophrenia in the Chinese population: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 31(6) Aug 2007, 1303-1306.
  • Ikeda, H., & et al. (1976). Serum creatine phosphokinase and transaminase activities in newly admitted psychiatric patients: Kyushu Neuro-psychiatry Vol 22(2) 1976, 164-168.
  • Iqbal, K., & Grundke-Iqbal, I. (2005). Pharmacological approaches of neurofibrillary degeneration: Current Alzheimer Research Vol 2(3) Jul 2005, 335-341.
  • Isbir, T., Unal, M., Yesilsoy, C., & Tukel, S. (1987). Action of maprotilin on the erythrocyte membrane Na-super(+)K-super(+)/Mg-super(++) ATPase and Ca-super(++)/Mg-super(++) ATPase in depressed patients: International Journal of Psychosomatics Vol 34(2) 1987, 15-17.
  • Jouvenceau, A., Hedou, G., Potier, B., Kollen, M., Dutar, P., & Mansuy, I. M. (2006). Partial inhibition of PP1 alters bidirectional synaptic plasticity in the hippocampus: European Journal of Neuroscience Vol 24(2) Jul 2006, 564-572.
  • Kantner, R. M., & Kirby, M. L. (1982). Changes in acid phosphatase activity in the substantia gelatinosa in response to pain: Brain Research Vol 238(2) Apr 1982, 451-456.
  • Kaya, N., Resmi, H., Ozerdem, A., Guner, G., & Tunca, Z. (2004). Increased inositol-monophosphatase activity by lithium treatment in bipolar patients: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 28(3) May 2004, 521-527.
  • Kimura, S., Kawasaki, S., Watanabe, S., Fujita, R., & Sasaki, K. (2008). Regulatory roles of Ca-super(2+)/calmodulin-dependent protein kinase II and protein phosphatase 2A on the quisqualic acid-induced K-super(+)-current response in identified neurons of Aplysia: Neuroscience Research Vol 60(1) Jan 2008, 73-81.
  • Kitahara, T., Takeda, N., Kubo, T., & Kiyama, H. (1998). An implication of protein phosphatase 2A-beta in the rat flocculus for lesion-induced vestibular plasticity: Acta Oto-Laryngologica Vol 118(5) 1998, 685-691.
  • Kluge, H., & Kuhne, G. (1986). MAO of platelets and ATPases of erythrocytes in mental diseases: Activitas Nervosa Superior Vol 28(4) Dec 1986, 300-302.
  • Koch, R. B., Rossi, H., & Price, S. (1981). Effect of antibody to anisole binding protein on odorant perturbation of Na-super(+)-K-super(+) ATPase activity: Chemical Senses Vol 6(2) 1981, 95-99.
  • Kodama, M., Russell, D. S., & Duman, R. S. (2005). Electroconvulsive Seizures Increase the Expression of MAP Kinase Phosphatases in Limbic Regions of Rat Brain: Neuropsychopharmacology Vol 30(2) Feb 2005, 360-371.
  • Kolkman, M. J. M., Streijger, F., Linkels, M., Bloemen, M., Heeren, D. J., Hendriks, W. J. A. J., et al. (2004). Mice lacking leukocyte common antigen-related (LAR) protein tyrosine phosphatase domains demonstrate spatial learning impairment in the two-trial water maze and hyperactivity in multiple behavioural tests: Behavioural Brain Research Vol 154(1) Sep 2004, 171-182.
  • Lerer, B., Bleich, A., Bennett, E. R., Ebstein, R. P., & et al. (1990). Platelet adenylate cyclase and phospholipase C activity in posttraumatic stress disorder: Biological Psychiatry Vol 27(7) Apr 1990, 735-740.
  • Levine, J., Umansky, R., Ezrielev, G., & Belmaker, R. H. (1993). Lack of effect of inositol treatment in chronic schizophrenia: Biological Psychiatry Vol 33(8-9) Apr-May 1993, 673-675.
  • Li, S., Chung, E., & Quock, R. M. (2004). Role of Cyclic GMP in Nitrous-Oxide-Induced Anxiolytic-Like Behavior in the Mouse Light-Dark Exploration Test: Behavioral Neuroscience Vol 118(3) Jun 2004, 648-652.
  • Li, Y. S., Mahadik, S. P., Rapport, M. M., & Karpiak, S. E. (1986). Acute effects of GM1 ganglioside: Reduction in both behavioral asymmetry and loss of Na-super(+),K-super(+)-ATPase after nigrostriatal transection: Brain Research Vol 377(2) Jul 1986, 292-297.
  • Liu, Y. L., Fann, C. S. J., Liu, C. M., Chang, C. C., Yang, W. C., Hung, S. I., et al. (2007). More evidence supports the association of PPP3CC with schizophrenia: Molecular Psychiatry Vol 12(10) Oct 2007, 966-974.
  • Luo, J., Yin, J.-H., & Wei, Q. (2003). The effect of calcineurin activator, extracted from Chinese herbal medicine, on memory and immunity in mice: Pharmacology, Biochemistry and Behavior Vol 75(4) Jul 2003, 749-754.
  • Luo, Y., & Ingram, V. M. (2001). Uncoupling of mitochondria activates protein phosphatases and inactivates MBP protein kinases: Journal of Alzheimer's Disease Vol 3(6) 2001, 593-598.
  • Maeda, T., Hamabe, W., Gao, Y., Fukazawa, Y., Kumamoto, K., Ozaki, M., et al. (2005). Morphine has an antinociceptive effect through activation of the okadaic-acid-sensitive Ser/Thr protein phosphatases PP2A and PP5 estimated by tail-pinch test in mice: Brain Research Vol 1056(2) Sep 2005, 191-199.
  • Mansfield, H. L. (1974). Rat urinary acid phosphatase as an indicator of sexual arousal: Dissertation Abstracts International.
  • Mansuy, I. M., & Shenolikar, S. (2006). Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory: Trends in Neurosciences Vol 29(12) Dec 2006, 679-686.
  • Marks, M. J., Smolen, A., & Collins, A. C. (1984). Brain NaK-ATPases in mice differentially sensitive to alcohols: Alcoholism: Clinical and Experimental Research Vol 8(4) Jul-Aug 1984, 390-396.
  • Mathews, R., Li, P. P., Young, L. T., Kish, S. J., & et al. (1997). Increased Galpha -sub(q/11 ) immunoreactivity in postmortem occipital cortex from patients with bipolar affective disorder: Biological Psychiatry Vol 41(6) Mar 1997, 649-656.
  • Matsumoto, H., & Pak, W. L. (1984). Light-induced phosphorylation of retina-specific polypeptides of Drosophila in vivo: Science Vol 223(4632) Jan 1984, 184-186.
  • Matthews, B. J., & Lacey, J. H. (1983). Skeletal maturation, growth, and hormonal and nutritional status in anorexia nervosa: An initial report: International Journal of Eating Disorders Vol 2(4) Sum 1983, 145-150.
  • Medvedeva, I. A., & Maslova, M. N. (1993). The dynamics and mechanism of changes in the activity of sodium- and potassium-activated adenosine triphosphatase (Na-,K-ATPase) of the rat erythrocytes under the effects of various stresses: Fiziologicheskii Zhurnal SSSR im I M Sechenova Vol 79(12) Dec 1993, 28-34.
  • Meisami, E., & Manoochehri, S. (1977). Effects of early bilateral chemical destruction of olfactory receptors on postnatal growth, Mg-ATPase and Na-K-ATPase activity of olfactory and non-olfactory structures of the rat brain: Brain Research Vol 128(1) 1977, 170-175.
  • Meltzer, H. L. (1991). Clinical response to lithium and decreased affinity of calmodulin for calcium ATPase: Lithium Vol 2(1) Feb 1991, 49-52.
  • Meltzer, H. L., & Kassir, S. (1982). Abnormal calmodulin-activated CaATPase in manic-depressive subjects: Journal of Psychiatric Research Vol 17(1) 1982-1983, 29-35.
  • Mikuni, M., Kusumi, I., Kagaya, A., Kuroda, Y., & et al. (1991). Increased 5-HT-2 receptor function as measured by serotonin-stimulated phosphoinositide hydrolysis in platelets of depressed patients: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 15(1) 1991, 49-61.
  • Molchan, S. E., Atack, J. R., & Sunderland, T. (1994). Decreased CSF inositol monophosphatase activity after lithium treatment: Psychiatry Research Vol 53(1) Jul 1994, 103-105.
  • Moore, G. J., Bebchuk, J. M., Parrish, J. K., Faulk, M. W., Arfken, C. L., Strahl-Bevacqua, J., et al. (1999). Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness: American Journal of Psychiatry Vol 156(12) Dec 1999, 1902-1908.
  • Morinobu, S., Fujimaki, K., Kawano, K.-i., Tanaka, K., Takahashi, J., Ohkawa, M., et al. (2003). Influence of Immobilization Stress on the Expression and Phosphatase Activity of Protein Phosphatase 2A in the Rat Brain: Biological Psychiatry Vol 54(10) Nov 2003, 1060-1066.
  • Morrow, A. L., Ferrani-Kile, K., Davis, M. I., Shumilla, J. A., Kumar, S., Maldve, R., et al. (2004). Ethanol effects on cell signaling mechanisms: Alcoholism: Clinical and Experimental Research Vol 28(2) Feb 2004, 217-227.
  • Moscovich, D. G., Belmaker, R. H., Agam, G., & Livne, A. (1990). Inositol-1-phosphatase in red blood cells of manic-depressive patients before and during treatment with lithium: Biological Psychiatry Vol 27(5) Mar 1990, 552-555.
  • Muzzio, I. A., Ramirez, R. R., Talk, A. C., & Matzel, L. D. (1999). Interactive contributions of intracellular calcium and protein phosphatases to massed-trials learning deficits in Hermissenda: Behavioral Neuroscience Vol 113(1) Feb 1999, 103-117.
  • Narayanan, H. S., Mohan, K. S., Jayasimha, N., & Sridhara Rama Rao, B. S. (1987). Hyperphosphatasia, neurologic deficits and mental retardation in four siblings: Indian Journal of Psychiatry Vol 29(3) Jul 1987, 291-292.
  • Naylor, G. J. (1985). Reversal of vanadate-induced inhibition of Na-K ATPase: A possible explanation of the therapeutic effect of carbamazepine in affective illness: Journal of Affective Disorders Vol 8(1) Jan-Feb 1985, 91-93.
  • No authorship, i. (2002). Erratum: Learning & Memory Vol 9(5) Sep-Oct 2002, 360.
  • Oaknin, S., Rodriguez del Castillo, A., Guerra, M., Battaner, E., & et al. (1989). Changes in forebrain Na,K-ATPase activity and serum hormone levels during sexual behavior in male rats: Physiology & Behavior Vol 45(2) Feb 1989, 407-410.
  • Ocana, M., Entrena, J. M., Baeyens, J. M., & Del Pozo, E. (2007). The antinociceptive effect of morphine is reversed by okadaic acid in morphine-naive but not in morphine-tolerant mice: Pharmacology, Biochemistry and Behavior Vol 86(1) Jan 2007, 21-26.
  • O'Donnell, T., Rotzinger, S., Nakashima, T. T., Hanstock, C. C., Ulrich, M., & Silverstone, P. H. (2000). Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in the rat brain: Brain Research Vol 880(1-2) Oct 2000, 84-91.
  • O'Donnell, T., Rotzinger, S., Nakashima, T. T., Hanstock, C. C., Ulrich, M., & Silverstone, P. H. (2003). "Chronic lithium and sodium valproate both decrease the concentration of myoinositol and increase the concentration of inositol monophosphates in rat brain": Erratum: European Neuropsychopharmacology Vol 13(4) Aug 2003, 219.
  • Okada, F., Murakami, T., & Tokumitsu, Y. (1995). Low levels of pertussis toxin adeonisine diphosphate ribosylation in the schizophrenic brain: Archives of General Psychiatry Vol 52(4) Apr 1995, 319.
  • Oztas, B., & Oner, P. (1984). The influence of electroshock on ATPase activity in different regions of rat brain: IRCS Medical Science: Psychology & Psychiatry Vol 12(11-12) Nov-Dec 1984, 1093-1094.
  • Paclt, I., & Tomasova, H. (1991). Activity of alkaline phosphatase and bone isoenzyme during lithium treatment of schizophrenia and manic-depressive psychosis in children: Homeostasis in Health and Disease Vol 33(1-2) Apr 1991, 94-95.
  • Paclt, I., & Tomasova, H. (1992). Alkaline phosphatase activity and bone isoenzyme activity in children treated with lithium: Ceska a Slovenska Psychiatrie Vol 88(3-4) Aug 1992, 145-147.
  • Pagano, M., & Kirschner, N. M. (1978). Sex guilt, sexual arousal, and urinary acid phosphatase output: Journal of Research in Personality Vol 12(1) Mar 1978, 68-75.
  • Parthasarathy, L. K., Seelan, R. S., Wilson, M. A., Vadnal, R. E., & Parthasarathy, R. N. (2003). Regional changes in rat brain inositol monophosphatase 1 (IMPase 1) activity with chronic lithium treatment: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 27(1) Feb 2003, 55-60.
  • Parthasarathy, R., Parthasarathy, L., Ramesh, T. G., Devi, C. S., & et al. (1992). The effects of lithium isotopes on the myo-inositol 1-phosphatase reaction in rat brain, liver, and testes: Life Sciences Vol 50(19) 1992, 1445-1450.
  • Parthasarathy, R., Parthasarathy, L., & Vadnal, R. (1997). Brain inositol monophosphatase identified as a galactose 1-phosphatase: Brain Research Vol 778(1) Dec 1997, 99-106.
  • Paul, S., Olausson, P., Venkitaramani, D. V., Ruchkina, I., Moran, T. D., Tronson, N., et al. (2007). The striatal-enriched protein tyrosine phosphatase gates long-term potentiation and fear memory in the lateral amygdala: Biological Psychiatry Vol 61(9) May 2007, 1049-1061.
  • Persinger, M. A., Carrey, N. J., Lafreniere, G. F., & Mazzuchin, A. (1978). Step-like DRL schedule change effects on blood chemistry, leukocytes and tissue in rats: Physiology & Behavior Vol 21(6) Dec 1978, 899-904.
  • Phiel, C. J., & Klein, P. S. (2001). Molecular targets of lithium action: Annual Review of Pharmacology and Toxicology Vol 41 2001, 789-813.
  • Piccoli, F., Guarneri, R., Savettieri, G., & Bonavita, V. (1972). ATP and ATPase in the developing rat brain: Acta Neurologica Vol 27(5) Sep 1972, 501-505.
  • Planel, E., Miyasaka, T., Launey, T., Chui, D.-H., Tanemura, K., Sato, S., et al. (2004). Alterations in Glucose Metabolism Induce Hypothermia Leading to Tau Hyperphosphorylation through Differential Inhibition of Kinase and Phosphatase Activities: Implications for Alzheimer's Disease: Journal of Neuroscience Vol 24(10) Mar 2004, 2401-2411.
  • Preece, N. E., Gadian, D. G., Houseman, J., & Williams, S. R. (1992). Lithium-induced modulation of cerebral inositol phosphate metabolism in the rat: A multinuclear magnetic resonance study in vivo: Lithium Vol 3(4) Nov 1992, 287-297.
  • Prevett, M., Enevoldson, T. P., & Duncan, J. S. (1992). Adult onset acid maltase deficiency associated with epilepsy and dementia: A case report: Journal of Neurology, Neurosurgery & Psychiatry Vol 55(6) Jun 1992, 509.
  • Qian, M., Pan, G., Sun, L., Feng, C., Xie, Z., Tully, T., et al. (2007). Receptor-like tyrosine phosphatase PTP10D is required for long-term memory in Drosophila: Journal of Neuroscience Vol 27(16) Apr 2007, 4396-4402.
  • Raha-Chowdhury, R., Andrews, S. R., & Gruen, J. R. (2005). CAT 53: A protein phosphatase 1 nuclear targeting subunit encoded in the MHC Class I region strongly expressed in regions of the brain involved in memory, learning, and Alzheimer's disease: Molecular Brain Research Vol 138(1) Jul 2005, 70-83.
  • Rangaraj, N., & Kalant, H. (1978). Effects of ethanol withdrawal, stress and amphetamine on rat brain (Na-super(+)+K-super(+))-ATPase: Biochemical Pharmacology Vol 27(8) Apr 1978, 1139-1144.
  • Rangaraj, N. I., & Kalant, H. (1984). Effect of ethanol tolerance on norepinephrine-ethanol inhibition of (Na-super(+)+K-super(+))-adenosine triphosphatase in various regions of rat brain: Journal of Pharmacology and Experimental Therapeutics Vol 231(2) Nov 1984, 416-421.
  • Ratnasooriya, W. D. (1992). Antireproductive effect of a prostonoid receptor antagonist (Di-4-phloretin phosphate) in the male rat: Medical Science Research Vol 20(12) Jun 1992, 445-447.
  • Reddy, P. L., Khanna, S., Subhash, M. N., Channabasavanna, S. M., & et al. (1989). Erythrocyte membrane Na-K ATPase activity in affective disorder: Biological Psychiatry Vol 26(5) Sep 1989, 533-537.
  • Rehavi, M., Jerushalemi, Z., Aviv, A., Laor, N., & et al. (1993). Interaction between antidepressants and phosphoinositide signal transduction system in human platelets: Biological Psychiatry Vol 33(1) Jan 1993, 40-44.
  • Robinson, P. R. (1982). Control of the light-activated cyclic GMP phosphodiesterase of frog photoreceptor membranes: Dissertation Abstracts International.
  • Rodella, L., Rezzani, R., Agostini, C., & Bianchi, R. (1998). Induction of NADPH-diaphorase activity in the rat periaqueductal gray matter after nociceptive visceral stimulation: Brain Research Vol 793(1-2) May 1998, 333-336.
  • Romano, A., Delorenzi, A., Pedreira, M. E., Tomsic, D., & Maldonado, H. (1996). Acute administration of a permeant analog of cAMP and a phosphodiesterase inhibitor improve long-term habituation in the crab Chasmagnathus: Behavioural Brain Research Vol 75(1-2) Feb 1996, 119-125.
  • Rossi, H., & Koch, R. B. (1981). Odorant responses of Na-super(+)-K-super(+) ATPase activity by preparations from paired turbinals of rat olfactory tissue: Chemical Senses Vol 6(2) 1981, 113-117.
  • Rotrosen, J., & et al. (1978). Effects of plant lectins on cation-activated brain ATPases: Life Sciences Vol 23(12) Sep 1978, 1241-1248.
  • Runyan, J. D., Moore, A. N., & Dash, P. K. (2005). A role for prefrontal calcium-sensitive protein phosphatase and kinase activities in working memory: Learning & Memory Vol 12(2) Mar 2005, 103-110.
  • Rybakowski, J. K., & Lehmann, W. (1994). Decreased activity of erythrocyte membrane ATPases in depression and schizophrenia: Neuropsychobiology Vol 30(1) 1994, 11-14.
  • Sanchez-Amate, M. C., Flores, P., & Sanchez-Santed, F. (2001). Effects of chlorpyrifos in the plus-maze model of anxiety: Behavioural Pharmacology Vol 12(4) Jul 2001, 285-292.
  • Seitz, D. P. (2007). Hypophosphatemia and neuroleptic malignant syndrome: Journal of Clinical Psychopharmacology Vol 27(3) Jun 2007, 302-303.
  • Shaldubina, A., Stahl, Z., Furszpan, M., Regenold, W. T., Shapiro, J., Belmaker, R. H., et al. (2006). Inositol deficiency diet and lithium effects: Bipolar Disorders Vol 8(2) Apr 2006, 152-159.
  • Shaltiel, G., Kozlovsky, N., Belmaker, R. H., & Agam, G. (2002). 3'(2')-Phosphoadenosine 5'-phosphate phosphatase is reduced in postmortem frontal cortex of bipolar patients: Bipolar Disorders Vol 4(5) Oct 2002, 302-306.
  • Shea, T. B., & Ekinci, F. J. (1999). Biphasic Effect of Calcium Influx on Tau Phosphorylation: Involvement of Calcium-Dependent Phosphatase and Kinase Activities: Journal of Alzheimer's Disease Vol 1(6) 1999, 353-360.
  • Sheridan, P. H., & Collins, M. (1983). Potentially life-threatening hypophosphatemia in anorexia nervosa: Journal of Adolescent Health Care Vol 4(1) Mar 1983, 44-46.
  • Shimon, H., Agam, G., Belmaker, R. H., Hyde, T. M., & Kleinman, J. E. (1997). Reduced frontal cortex inositol levels in postmortem brain of suicide victims and patients with bipolar disorder: American Journal of Psychiatry Vol 154(8) Aug 1997, 1148-1150.
  • Shimon, H., Sobolev, Y., Davidson, M., Haroutunian, V., Belmaker, R. H., & Agam, G. (1998). Inositol levels are decreased in postmortem brain of schizophrenic patients: Biological Psychiatry Vol 44(6) Sep 1998, 428-432.
  • Shotwell, S. L. (1982). A biochemical and genetic analysis of the cyclic AMP phosphodiesterase defect in dunce, a memory mutant of Drosophila: Dissertation Abstracts International.
  • Sikora, J., & Farska, I. (1989). ATPase activity, endogenous depression, lithium therapy, and electroconvulsive therapy: Cesko-Slovenska Psychiatrie Vol 85(6) Dec 1989, 361-367.
  • Silva, A. J., & Josselyn, S. A. (2002). The molecules of forgetfulness: Nature Vol 418(6901) Aug 2002, 929-930.
  • Silverstone, P. H., Hanstock, C. C., Fabian, J., Staab, R., & et al. (1996). Chronic lithium does not alter human myo-inositol or phosphomonoester concentrations as measured by -2H and -3-2P MRS: Biological Psychiatry Vol 40(4) Aug 1996, 235-246.
  • Skelton, M. R., Ponniah, S., Wang, D. Z. M., Doetschman, T., Vorhees, C. V., & Pallen, C. J. (2003). Protein tyrosine phosphatase alpha (PTPalpha ) knockout mice show deficits in Morris water maze learning, decreased locomotor activity, and decreases in anxiety: Brain Research Vol 984(1-2) Sep 2003, 1-10.
  • Skvortsevich, E. G. (1982). Influence of thalium ions on the hydrolysis of ATP and superscript 1-sup-8O-exchange in Na-super(+),K-super(+)-ATPase: Nervnaya Sistema Vol 1982 (23) 1982, 95-98.
  • Soares, J. C., Dippold, C. S., Wells, K. F., Houck, P., & Mallinger, A. G. (1999). Reproducibility of in vivo measures of platelet membrane phospholipids in human subjects: Psychiatry Research Vol 86(2) May 1999, 107-112.
  • Sofic, E., Frolich, L., Riederer, P., Jellinger, K., & et al. (1991). Biochemical membrane constituents and activities of alkaline and acid phosphatase and cathepsin in cortical and subcortical brain areas in dementia of the Alzheimer type: Dementia Vol 2(1) Jan-Feb 1991, 39-44.
  • Song, H., Ueno, S.-I., Numata, S., Iga, J.-I., Shibuya-Tayoshi, S., Nakataki, M., et al. (2007). Association between PNPO and schizophrenia in the Japanese population: Schizophrenia Research Vol 97(1-3) Dec 2007, 264-270.
  • Spies, C. D., Spies, K.-P., Zinke, S., Runkel, N., Berger, G., Marks, C., et al. (1997). Alcoholism and carcinoma change the intracellular PH and activate platelet Na-super(+)/H-super(+)-exchange in men: Alcoholism: Clinical and Experimental Research Vol 21(9) Dec 1997, 1653-1660.
  • Staubli, U., & Chun, D. (1996). Proactive and retrograde effects on LTP produced by theta pulse stimulation: Mechanisms and characteristics of LTP reversal in vitro: Learning & Memory Vol 3(2-3) Sep-Oct 1996, 96-105.
  • Steen, K. H., Steen, A. E., & Reeh, P. W. (1995). A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro: Journal of Neuroscience Vol 15(5, Pt 2) May 1995, 3982-3989.
  • Steen, V. M. (2002). Does inositol signalling have a role in disease susceptibility and drug treatment of bipolar disorder? : Bipolar Disorders Vol 4(Suppl1) Sep 2002, 53-55.
  • Stevens, R., Aranguren, M. E., Wolstencroft, K., Sattler, U., Drummond, N., Horridge, M., et al. (2007). Using OWL to model biological knowledge: International Journal of Human-Computer Studies Vol 65(7) Jul 2007, 583-594.
  • Sun, W.-L., Zhou, L., Hazim, R., Quinones-Jenab, V., & Jenab, S. (2007). Effects of acute cocaine on ERK and DARPP-32 phosphorylation pathways in the caudate-putamen of Fischer rats: Brain Research Vol 1178 Oct 2007, 12-19.
  • Swann, A. C., Reilly, E., & Overall, J. E. (1986). Reduced sensitivity of red blood cell (Na-super(+), K-super(+))-ATPase to ethanol in vitro in male alcoholic patients: Relationship to clinical characteristics: Alcoholism: Clinical and Experimental Research Vol 10(5) Oct 1986, 526-530.
  • Takahashi, M., Terwilliger, R., Lane, C., Mezes, P. S., Conti, M., & Duman, R. S. (1999). Chronic antidepressant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms: Journal of Neuroscience Vol 19(2) Jan 1999, 610-618.
  • Thakar, J. H., Lapierre, Y. D., & Waters, B. G. (1985). Erythrocyte membrane sodium-potassium and magnesium ATPase in primary affective disorder: Biological Psychiatry Vol 20(7) Jul 1985, 734-740.
  • Tsakiris, S., & Kontopoulos, A. N. (1993). Time changes in Na-super(+),K-super(+)-ATPase, Mg-super(++)-ATPase, and acetylcholinesterase activities in the rat cerebrum and cerebellum caused by stress: Pharmacology, Biochemistry and Behavior Vol 44(2) Feb 1993, 339-342.
  • Tsuda, M., Koizumi, S., Kita, A., Shigemoto, Y., Ueno, S., & Inoue, K. (2000). Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in rats: Involvement of heteromeric P2X-sub(2/3 ) receptor signaling in capsaicin-insensitive primary afferent neurons: Journal of Neuroscience Vol 20(15) Aug 2000, RC90.
  • Uludag, O., Tunctan, B., Altug, S., Zengil, H., & Abacioglu, N. (2007). Twenty-four-hour variation of L-arginine/nitric oxide/cyclic guanosine monophosphate pathway demonstrated by the mouse visceral pain model: Chronobiology International Vol 24(3) Jun 2007, 413-424.
  • Vadnal, R., Heng, H. H. Q., Parthasarathy, L., & Parthasarathy, R. (1998). Human chromosomal localization of a gene for inositol monophosphatase by fluorescence in situ hybridization: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 9(4) Mar 1998, 683-685.
  • Vadnal, R., & Parthasarathy, R. (1995). Myo-inositol monophospatase: Diverse effects of lithium, carbamazepine, and valproate: Neuropsychopharmacology Vol 12(4) Jul 1995, 277-285.
  • Valjent, E., Pascoli, V., Svenningsson, P., Paul, S., Enslen, H., Corvol, J.-C., et al. (2005). Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 102(2) Jan 2005, 491-496.
  • Villiger, J. W., & Dunn, A. J. (1981). Phosphodiesterase inhibitors facilitate memory for passive avoidance conditioning: Behavioral & Neural Biology Vol 31(3) Mar 1981, 354-359.
  • Viquez, N. M. (2007). Protein phosphatase 2A regulates synaptic growth and structure at the drosophila neuromuscular junction. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Waddell, S. (2003). Protein phosphatase 1 and memory: Practice makes PP1 imperfect? : Trends in Neurosciences Vol 26(3) Mar 2003, 117-119.
  • Wang, J.-H., & Kelly, P. T. (1996). The balance between postsynaptic Ca-super(2+)-dependent protein kinase and phosphatase activities controlling synaptic strength: Learning & Memory Vol 3(2-3) Sep-Oct 1996, 170-181.
  • Weng, Y.-H., Chou, Y.-H., & Lien, R.-I. (2003). Hyperbilirubinemia in healthy neonates with glucose-6-phosphate dehydrogenase deficiency: Early Human Development Vol 71(2) Apr 2003, 129-136.
  • Whalley, L. J., Scott, M., Reading, H. W., & Christie, J. E. (1980). Effect of electroconvulsive therapy on erythrocyte adenosine triphosphatase activity in depressive illness: British Journal of Psychiatry Vol 137 Oct 1980, 343-345.
  • Wieraszko, A. (1996). Extracellular ATP as a neurotransmitter: Its role in synaptic plasticity in the hippocampus: Acta Neurobiologiae Experimentalis Vol 56(2) 1996, 637-648.
  • Williamson, P. C., Malla, A., Cortese, L., Stoessl, A. J., Drost, D., & Stanley, J. A. (1997). Phosphorus 31 magnetic resonance spectroscopy in patients with Huntington disease: Archives of General Psychiatry Vol 54(2) Feb 1997, 186-188.
  • Woo, N. H., Abel, T., & Nguyen, P. V. (2002). Genetic and pharmacological demonstration of a role for cyclic AMP-dependent protein kinase-mediated suppression of protein phosphatases in gating the expression of late LTP: European Journal of Neuroscience Vol 16(10) Nov 2002, 1871-1876.
  • Xi, Z., Yu, L., Shi, Y., Zhang, J., Zheng, Y., He, G., et al. (2007). No association between PPP3CC and schizophrenia in the Chinese population: Schizophrenia Research Vol 90(1-3) Feb 2007, 357-359.
  • Yamashita, T., Inui, S., Maeda, K., Hua, D. R., Takagi, K., Fukunaga, K., et al. (2006). Regulation of CaMKII by alpha 4/PP2Ac contributes to learning and memory: Brain Research Vol 1082(1) Apr 2006, 1-10.
  • Yan, L., Bobula, J. M., Svenningsson, P., Greengard, P., & Silver, R. (2006). DARPP-32 Involvement in the Photic Pathway of the Circadian System: Journal of Neuroscience Vol 26(37) Sep 2006, 9434-9438.
  • Yang, Y., Fischer, Q. S., Zhang, Y., Baumgartel, K., Mansuy, I. M., & Daw, N. W. (2005). Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex: Nature Neuroscience Vol 8(6) Jun 2005, 791-796.
  • Yildiz, A., Demopulos, C. M., Moore, C. M., Renshaw, P. F., & Sachs, G. S. (2001). Effect of lithium on phosphoinositide metabolism in human brain: A proton decoupled superscript 3superscript 1P magnetic resonance spectroscopy study: Biological Psychiatry Vol 50(1) Jul 2001, 3-7.
  • Yoon, I. S., Li, P. P., Siu, K. P., Kennedy, J. L., Cooke, R. G., Parikh, S. V., et al. (2001). Altered IMPA2 gene expression and calcium homeostasis in bipolar disorder: Molecular Psychiatry Vol 6(6) Nov 2001, 678-683.
  • Zeng, L.-H., Xu, L., Rensing, N. R., Sinatra, P. M., Rothman, S. M., & Wong, M. (2007). Kainate seizures cause acute dendritic injury and actin depolymerization in vivo: Journal of Neuroscience Vol 27(43) Oct 2007, 11604-11613.
  • Zhang, E. E. (2005). Dissecting functions of shp2 tyrosine phosphatase in the central nervous system. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Zhao, W., Bennett, P., Sedman, G. L., & Ng, K. T. (1995). The impairment of long-term memory formation by the phosphatase inhibitor okadaic acid: Brain Research Bulletin Vol 36(6) 1995, 557-561.
  • Zhou, J. (2007). Functions of tyrosine kinases and phosphatases in presynaptic development during neuromuscular junction formation. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Zou, J., Marjanovic, J., Kisseleva, M. V., Wilson, M., & Majerus, P. W. (2007). Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 104(43) Oct 2007, 16834-16839.


External links


This page uses Creative Commons Licensed content from Wikipedia (view authors).
Advertisement