Psychology Wiki
No edit summary
 
No edit summary
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  +
{{BioPsy}}
 
<!-- Here is a table of data; skip past it to edit the text. -->
 
<!-- Here is a table of data; skip past it to edit the text. -->
  +
{| class="toccolours" border="1" style="float: right; clear: right; margin: 0 0 1em 1em; border-collapse: collapse;"
<table border="1" cellpadding="2" cellspacing="0" align="right" style="margin-left:1em">
 
  +
! {{chembox header}}| '''{{{name|Phenethylamine}}}''' <ref name ="Merck">''Merck Index'', 12th Edition, '''7371'''.</ref>
 
  +
|-
<tr><th colspan="2" align=center bgcolor="#cccccc">'''Phenethylamine'''</th></tr>
 
 
| align="center" colspan="2" bgcolor="#ffffff" | [[Image:Phenethylamine structure.png|Chemical structure of Phenethylamine]] <br>[[Image:Phenethylamine-3d.png|150px]]
 
  +
|-
<tr><td>[[IUPAC nomenclature|Chemical name]]</td><td>2-Phenyl-ethylamine or<br>2-phenylethanamine</td></tr>
 
  +
| [[IUPAC nomenclature|Chemical name]]
 
  +
| {{{IUPAC|2-Phenylethylamine}}}
<tr><td>[[Chemical formula]]</td><td>C<sub>8</sub>H<sub>11</sub>N</td></tr>
 
  +
|-
 
  +
| Other names
<tr><td>[[Molecular mass]]</td><td>121.18 g/mol</td></tr>
 
  +
| Phenethylamine<br>β-Phenylethylamine<br>2-Phenyl-1-aminoethane<br>β-Aminoethylamine<br>2-Phenylethanamine
 
  +
|-
<tr><td>[[Density]]</td><td>0.965 g/ml</td></tr>
 
  +
| [[Chemical formula]]
 
 
| {{{formula|C<sub>8</sub>H<sub>11</sub>N}}}
<tr><td>[[Melting point]]</td><td>-60 °C</td></tr>
 
  +
|-
 
  +
| [[Molecular mass]]
<tr><td>[[Boiling point]]</td><td>200 °C</td></tr>
 
  +
| {{{mol_mass|121.18}}} g/mol
 
  +
|-
<tr><td>[[CAS registry number|CAS number]]</td><td>64-04-0</td></tr>
+
| [[CAS registry number|CAS number]]
 
  +
| [{{{CAS|64-04-0}}}]
<tr><td>[[Simplified molecular input line entry specification|SMILES]]</td>
 
  +
|-
<td>c1ccccc1CCN</td></tr>
 
  +
| [[Density]]
 
  +
| {{{density|0.964}}} g/cm<sup>3</sup>
<tr><td colspan="2" align="center">[[Image:Phenethylamine_structure.png|Chemical structure of Phenethylamine]]</td></tr>
 
  +
|-
  +
| [[Melting point]]
  +
| {{{melting_point|-60}}} °C
  +
|-
  +
| [[Boiling point]]
  +
| {{{boiling_point|194.5-195}}} °C
  +
|-
 
| [[Simplified molecular input line entry specification|SMILES]]
  +
| {{{SMILES|c1ccccc1CCN}}}
  +
|-
  +
| [[NFPA 704]]
  +
| {{NFPA 704 | Health=2 | Flammability=2 |Reactivity=2}}
  +
|-
  +
| {{chembox header}} | <small>[[wikipedia:Chemical infobox|Disclaimer and references]]</small>
  +
|-
  +
|}
   
 
'''Phenethylamine''' ('''PEA'''), or ''β''-Phenylethylamine, is an [[alkaloid]] and [[monoamine]]. In the human brain, it is believed to function as a [[neuromodulator]] or [[neurotransmitter]] ([[trace amine]]). Phenethylamine is a natural compound biosynthesized from the [[amino acid]] [[phenylalanine]] by enzymatic [[decarboxylation]]. It is also found in many foods such as [[chocolate]], especially after [[Microorganism|microbial]] [[fermentation (food)|fermentation]]. It has been suggested that phenethylamine from food may have psychoactive effects in sufficient quantities. However, it is quickly metabolized by the [[enzyme]] [[MAO-B]], preventing significant concentrations from reaching the brain.
</table>
 
   
 
'''Substituted phenethylamines''' are a broad and diverse class of compounds that include [[neurotransmitter]]s, [[hormone]]s, [[stimulant]]s, [[Psychedelics, dissociatives and deliriants|hallucinogens]], [[empathogen-entactogen|entactogen]]s, [[anorectic]]s, [[bronchodilator]]s, and [[antidepressant]]s. The phenethylamine structure can also be found as part of more complex ring systems such as the [[ergoline]] system of [[LSD]] or the [[morphinan]] system of [[morphine]].
'''Phenethylamine''' (''&beta;''-Phenylethylamine) is an [[alkaloid]] and [[monoamine]]. In the human brain, it is believed to function as a [[neuromodulator]] or [[neurotransmitter]] ([[trace amine]]). A colorless liquid that forms a solid [[carbonate]] [[salt]] with [[carbon dioxide]] (CO<sub>2</sub>) upon exposure to air, phenethylamine in nature is synthesized from the [[amino acid]] [[phenylalanine]] by enzymatic [[decarboxylation]]. It is also found in many foods, especially after [[Microorganism|microbial]] [[fermentation]], e.g., in [[chocolate]].
 
It has been suggested that phenethylamine from food (e.g., chocolate) may have psychoactive effects in sufficient quantities. However, it is quickly metabolized by the [[enzyme]] [[MAO-B]], preventing significant concentrations from reaching the brain.
 
   
  +
== Chemistry ==
'''Substituted phenethylamines''' are a broad and diverse class of compounds that include [[neurotransmitter]]s, [[hormone]]s, [[stimulant]]s, [[Psychedelics, dissociatives and deliriants|hallucinogens]], [[empathogen-entactogen|entactogen]]s, [[anorectic]]s, [[bronchodilator]]s, and [[antidepressant]]s.
 
  +
Phenethylamine is an [[aromatic]] amine which is a colorless liquid at room temperature. It is soluble in water, [[ethanol]], and [[diethyl ether|ether]].<ref name ="Merck"/> Similar to other low molecular weight amines, it has a fishy odor. Upon exposure to air, it forms a solid [[carbonate]] [[salt]] with [[carbon dioxide]]. Phenethylamine is strongly [[base (chemistry)|basic]] and forms a stable crystalline [[hydrochloride]] salt with a melting point of 217 °C. Phenethylamine is also a skin irritant and possible sensitizer.
   
  +
==Chocolate theory of love==
The phenethylamine structure can also be found as part of more complex ring systems such as the [[ergoline]] system of [[LSD]] or the [[morphinan]] system of [[morphine]].
 
  +
In the early 1980s, [[chemistry of love]] researcher [[Michael Libowitz]], author of the popular 1983 book ''The Chemistry of Love'', remarked to reporters that “chocolate was loaded with PEA”. This became the focus for an article in ''The New York Times'', which was then taken up by the wire services, then by magazine free-lancers, and evolved into the now eponymous “chocolate theory of love”.<ref>Liebowitz, Michael, R. (1983). ''The Chemistry of Love''. Boston: Little, Brown, & Co.</ref>
   
 
== Substituted phenethylamines ==
 
== Substituted phenethylamines ==
Line 36: Line 54:
 
[[Image:Phenethylamine rests.png|frame|right|General structure of phenethylamines and amphetamines (see the table below).]]
 
[[Image:Phenethylamine rests.png|frame|right|General structure of phenethylamines and amphetamines (see the table below).]]
   
[[Substitution|Substituted]] phenethylamines carry additional chemical modifications at the [[phenyl]] ring, the [[sidechain]], or the [[amino]] group:
+
[[Substitution (chemistry)|Substituted]] phenethylamines carry additional chemical modifications at the [[phenyl]] ring, the [[sidechain]], or the [[amino]] group:
   
* [[Amphetamine]]s are [[homologous series|homologue]]s of phenethylamines carrying an alpha-methyl (''&alpha;''-CH<sub>3</sub>) group at the sidechain [[carbon]] atom next to the amino group.
+
* [[Substituted Amphetamines]] are [[homologous series|homologue]]s of phenethylamines carrying an alpha-methyl (''α''-CH<sub>3</sub>) group at the sidechain [[carbon]] atom next to the amino group.
 
* [[Catecholamine]]s are phenethylamines carrying two [[hydroxy]] groups in positions 3 and 4 of the phenyl ring. Examples are the hormones and neurotransmitters [[dopamine]], [[epinephrine]] (adrenaline), and [[norepinephrine]] (noradrenaline).
 
* [[Catecholamine]]s are phenethylamines carrying two [[hydroxy]] groups in positions 3 and 4 of the phenyl ring. Examples are the hormones and neurotransmitters [[dopamine]], [[epinephrine]] (adrenaline), and [[norepinephrine]] (noradrenaline).
 
* The [[aromatic]] amino acids [[phenylalanine]] and [[tyrosine]] are phenethylamines carrying a [[carboxyl]] group (COOH) in alpha position.
 
* The [[aromatic]] amino acids [[phenylalanine]] and [[tyrosine]] are phenethylamines carrying a [[carboxyl]] group (COOH) in alpha position.
  +
* [[2C's]] are phenethylamines with [[Methoxy|methoxy groups]] attached to the 2 and 5 carbons and no alpha-methyl group.
   
 
== Pharmacology ==
 
== Pharmacology ==
Line 46: Line 65:
 
Many substituted phenethylamines are [[Pharmacology|pharmacologically]] active drugs due to their similarity to the monoamine neurotransmitters:
 
Many substituted phenethylamines are [[Pharmacology|pharmacologically]] active drugs due to their similarity to the monoamine neurotransmitters:
   
* [[Stimulant]]s like the plant alkaloids [[ephedrine]] and [[cathinone]] and the synthetic drugs [[amphetamine]] (''speed'', ''benzedrine'') and [[methylphenidate]]
+
* [[Stimulant]]s like the plant alkaloids [[ephedrine]] and [[cathinone]] and the synthetic drug [[dextroamphetamine]] and [[methylphenidate]].
* [[Psychedelics, dissociatives and deliriants|Hallucinogens]] like the plant alkaloid [[mescaline]] and the synthetic drug [[2C-B]]
+
* [[Psychedelics, dissociatives and deliriants|Hallucinogens]] like the plant alkaloid [[mescaline]] and the synthetic drug [[2C-B]].
* [[Empathogen-entactogen]]s like [[MDMA]] (''ecstasy'') and [[3,4-methylenedioxyamphetamine|MDA]]
+
* [[Empathogen-entactogen]]s like [[MDMA]] (''ecstasy'') and [[3,4-methylenedioxyamphetamine|MDA]].
* [[Anorectic]]s like [[phentermine]], [[fenfluramine]], and [[amphetamine]]
+
* [[Anorectic]]s like [[phentermine]], [[fenfluramine]], and [[amphetamine]].
* [[Bronchodilator]]s like [[salbutamol]] and [[ephedrine]]
+
* [[Bronchodilator]]s like [[salbutamol]] and [[ephedrine]].
* [[Antidepressant]]s like [[bupropion]] and the [[monoamine oxidase inhibitor]]s [[phenelzine]] and [[tranylcypromine]].
+
* [[Antidepressant]]s like [[venlafaxine]], [[bupropion]] and the [[monoamine oxidase inhibitor]]s [[phenelzine]] and [[tranylcypromine]].
   
 
== Substitution table ==
 
== Substitution table ==
Line 57: Line 76:
 
Some of the more important phenethylamines are tabulated below. For simplicity, the [[stereochemistry]] of the sidechain is not covered in the table. Hundreds of other simple synthetic phenethylamines are known. This is due in part to the pioneering work of [[Alexander Shulgin]], much of which is described in the book [[PiHKAL]].
 
Some of the more important phenethylamines are tabulated below. For simplicity, the [[stereochemistry]] of the sidechain is not covered in the table. Hundreds of other simple synthetic phenethylamines are known. This is due in part to the pioneering work of [[Alexander Shulgin]], much of which is described in the book [[PiHKAL]].
   
{| border="1" cellspacing="0"
+
{| class="wikitable"
 
|+ '''Substituted phenethylamines''', tabulated by structure
 
|+ '''Substituted phenethylamines''', tabulated by structure
 
! Short Name
 
! Short Name
! ''R<sub>&alpha;</sub>''
+
! ''R<sub>α</sub>''
! ''R<sub>&beta;</sub>''
+
! ''R<sub>β</sub>''
 
! ''R<sub>2</sub>''
 
! ''R<sub>2</sub>''
 
! ''R<sub>3</sub>''
 
! ''R<sub>3</sub>''
Line 73: Line 92:
 
|[[Dopamine]] || || || || [[Hydroxy|OH]] || [[Hydroxy|OH]] || || || 3,4-di[[hydroxy]]-<nowiki>phenethylamine</nowiki>
 
|[[Dopamine]] || || || || [[Hydroxy|OH]] || [[Hydroxy|OH]] || || || 3,4-di[[hydroxy]]-<nowiki>phenethylamine</nowiki>
 
|-
 
|-
|[[Epinephrine]] (Adrenaline) || || [[Hydroxy|OH]]|| || [[Hydroxy|OH]] || [[Hydroxy|OH]] || || [[Methyl|CH<sub>3</sub>]]|| &beta;,3,4-tri[[hydroxy]]-''N''-[[methyl]]-<nowiki>phenethylamine</nowiki>
+
|[[Epinephrine]] (Adrenaline) || || [[Hydroxy|OH]]|| || [[Hydroxy|OH]] || [[Hydroxy|OH]] || || [[Methyl|CH<sub>3</sub>]]|| β,3,4-tri[[hydroxy]]-''N''-[[methyl]]-<nowiki>phenethylamine</nowiki>
 
|-
 
|-
|[[Norepinephrine]] (Noradrenaline) || || [[Hydroxy|OH]]|| || [[Hydroxy|OH]] || [[Hydroxy|OH]] || || || &beta;,3,4-tri[[hydroxy]]<nowiki>phenethylamine</nowiki>
+
|[[Norepinephrine]] (Noradrenaline) || || [[Hydroxy|OH]]|| || [[Hydroxy|OH]] || [[Hydroxy|OH]] || || || β,3,4-tri[[hydroxy]]<nowiki>phenethylamine</nowiki>
 
|-
 
|-
|[[Salbutamol]] || || [[hydroxyl|OH]] || || || [[hydroxyl|OH]] || CH<sub>2</sub>CH<sub>2</sub>OH || C(CH<sub>3</sub>)<sub>3</sub> || 4-(2-(''tert''-Butylamino)-1-hydroxyethyl)-2-(hydroxymethyl)phenol
+
|[[Salbutamol]] || || [[hydroxyl|OH]] || || || [[hydroxyl|OH]] || CH<sub>2</sub>OH || [[Butyl|C(CH<sub>3</sub>)<sub>3</sub>]] || β,4-di[[hydroxy]]-3-[[hydroxy]][[methyl]]-''N''-(''t'')-[[butyl]]-phenethylamine
 
|-
 
|-
|[[Amphetamine]] || [[Methyl|CH<sub>3</sub>]] || || || || || || || &alpha;-[[methyl]]-<nowiki>phenethylamine</nowiki>
+
|[[Beta-Methyl-phenethylamine]] || || [[Methyl|CH<sub>3</sub>]] || || || || || || β-[[methyl]]-<nowiki>phenethylamine</nowiki>
  +
|-
  +
|[[Amphetamine]] || [[Methyl|CH<sub>3</sub>]] || || || || || || || α-[[methyl]]-<nowiki>phenethylamine</nowiki>
 
|-
 
|-
 
|[[Methamphetamine]]|| [[Methyl|CH<sub>3</sub>]] || || || || || || [[Methyl|CH<sub>3</sub>]] || ''N''-[[methyl]]-[[amphetamine]]
 
|[[Methamphetamine]]|| [[Methyl|CH<sub>3</sub>]] || || || || || || [[Methyl|CH<sub>3</sub>]] || ''N''-[[methyl]]-[[amphetamine]]
 
|-
 
|-
|[[Levmetamfetamine]]|| [[Methyl|CH<sub>3</sub>]] || || || || || || [[Methyl|CH<sub>3</sub>]]
+
|[[Methylphenidate]] || || || || || || || || ''N'',α-[[butylene]]-β-[[methoxy]][[carbonyl]]-phenethylamine
|| ''N''-[[methyl]]-[[amphetamine]]
 
 
|-
 
|-
|[[Ephedrine]],<br>[[pseudoephedrine]]|| [[Methyl|CH<sub>3</sub>]] || [[Hydroxy|OH]] || || || || || [[Methyl|CH<sub>3</sub>]] || ''N''-[[methyl]]-&beta;-[[hydroxy]]-[[amphetamine]]
+
|[[Ephedrine]],<br>[[pseudoephedrine]]|| [[Methyl|CH<sub>3</sub>]] || [[Hydroxy|OH]] || || || || || [[Methyl|CH<sub>3</sub>]] || ''N''-[[methyl]]-β-[[hydroxy]]-[[amphetamine]]
 
|-
 
|-
|[[Cathine]] || [[Methyl|CH<sub>3</sub>]] || [[hydroxy|OH]] || || || || || || &beta;-[[hydroxy]]-[[amphetamine]]
+
|[[Cathine]] || [[Methyl|CH<sub>3</sub>]] || [[hydroxy|OH]] || || || || || || β-[[hydroxy]]-[[amphetamine]]
 
|-
 
|-
|[[Cathinone]] || [[Methyl|CH<sub>3</sub>]] || [[ketone|=O]] || || || || || || &beta;-[[ketone|keto]]-[[amphetamine]]
+
|[[Cathinone]] || [[Methyl|CH<sub>3</sub>]] || [[ketone|=O]] || || || || || || β-[[ketone|keto]]-[[amphetamine]]
 
|-
 
|-
|[[Methcathinone]] || [[Methyl|CH<sub>3</sub>]] || [[ketone|=O]] || || || || ||[[Methyl|CH<sub>3</sub>]] || ''N''-[[methyl]]-&beta;-[[ketone|keto]]-[[amphetamine]]
+
|[[Methcathinone]] || [[Methyl|CH<sub>3</sub>]] || [[ketone|=O]] || || || || ||[[Methyl|CH<sub>3</sub>]] || ''N''-[[methyl]]-β-[[ketone|keto]]-[[amphetamine]]
 
|-
 
|-
|[[Bupropion]] || [[Methyl|CH<sub>3</sub>]] || [[ketone|=O]] || || [[chlorine|Cl]] || || ||C(CH<sub>3</sub>)<sub>3</sub> || 3-[[chloro]]-''N''-''tert''-butyl-&beta;-[[ketone|keto]]-[[amphetamine]]
+
|[[Bupropion]] || [[Methyl|CH<sub>3</sub>]] || [[ketone|=O]] || || [[chlorine|Cl]] || || || [[Butyl|C(CH<sub>3</sub>)<sub>3</sub>]] || 3-[[chloro]]-''N''-(''t'')-[[butyl]]-β-[[ketone|keto]]-[[amphetamine]]
 
|-
 
|-
 
|[[Fenfluramine]]|| [[Methyl|CH<sub>3</sub>]] || || || [[Carbon|C]][[Fluorine|F]]<sub>3</sub> || || || [[Ethyl|CH<sub>2</sub>CH<sub>3</sub>]] || 3-tri[[fluoro]][[methyl]]-''N''-[[ethyl]]-[[amphetamine]]
 
|[[Fenfluramine]]|| [[Methyl|CH<sub>3</sub>]] || || || [[Carbon|C]][[Fluorine|F]]<sub>3</sub> || || || [[Ethyl|CH<sub>2</sub>CH<sub>3</sub>]] || 3-tri[[fluoro]][[methyl]]-''N''-[[ethyl]]-[[amphetamine]]
 
|-
 
|-
|[[Phentermine]] || [[Methyl|CH<sub>3</sub>]],[[Methyl|CH<sub>3</sub>]] || || || || || || || &alpha;,&alpha;-di[[methyl]]-<nowiki>phenethylamine</nowiki>
+
|[[Phentermine]] || [[Methyl|CH<sub>3</sub>]],[[Methyl|CH<sub>3</sub>]] || || || || || || || α,α-di[[methyl]]-<nowiki>phenethylamine</nowiki>
 
|-
 
|-
 
|[[Mescaline]] || || || || [[Methoxy|OCH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || || 3,4,5-tri[[methoxy]]-<nowiki>phenethylamine</nowiki>
 
|[[Mescaline]] || || || || [[Methoxy|OCH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || || 3,4,5-tri[[methoxy]]-<nowiki>phenethylamine</nowiki>
Line 105: Line 125:
 
|-
 
|-
 
|[[MDMA]] || [[Methyl|CH<sub>3</sub>]] || || ||colspan=2| -O-CH<sub>2</sub>-O- || || [[Methyl|CH<sub>3</sub>]] || 3,4-[[methylene]]dioxy-''N''-[[methyl]]-[[amphetamine]]
 
|[[MDMA]] || [[Methyl|CH<sub>3</sub>]] || || ||colspan=2| -O-CH<sub>2</sub>-O- || || [[Methyl|CH<sub>3</sub>]] || 3,4-[[methylene]]dioxy-''N''-[[methyl]]-[[amphetamine]]
  +
|-
  +
|[[MDMC]] || [[Methyl|CH<sub>3</sub>]] || [[ketone|=O]] || ||colspan=2| -O-CH<sub>2</sub>-O- || || [[Methyl|CH<sub>3</sub>]] || 3,4-[[methylene]]dioxy-''N''-[[methyl]]-β-[[ketone|keto]]-[[amphetamine]]
 
|-
 
|-
 
|[[2,5-dimethoxy-4-methylamphetamine|DOM]] || [[Methyl|CH<sub>3</sub>]] || || [[Methoxy|OCH<sub>3</sub>]] || || [[Methyl|CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[methyl]]-[[amphetamine]]
 
|[[2,5-dimethoxy-4-methylamphetamine|DOM]] || [[Methyl|CH<sub>3</sub>]] || || [[Methoxy|OCH<sub>3</sub>]] || || [[Methyl|CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[methyl]]-[[amphetamine]]
Line 123: Line 145:
 
|-
 
|-
 
|[[2C-E]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[Ethyl|CH<sub>2</sub>CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[ethyl]]-<nowiki>phenethylamine</nowiki>
 
|[[2C-E]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[Ethyl|CH<sub>2</sub>CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[ethyl]]-<nowiki>phenethylamine</nowiki>
  +
|-
  +
|[[2C-F]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[fluorine|F]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[Fluoro]]-<nowiki>phenethylamine</nowiki>
 
|-
 
|-
 
|[[2C-N]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[Nitro|NO<sub>2</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[Nitro]]-<nowiki>phenethylamine</nowiki>
 
|[[2C-N]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[Nitro|NO<sub>2</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[Nitro]]-<nowiki>phenethylamine</nowiki>
Line 128: Line 152:
 
|[[2C-T-2]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]][[Ethyl|CH<sub>2</sub>CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[ethyl]][[thio]]-<nowiki>phenethylamine</nowiki>
 
|[[2C-T-2]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]][[Ethyl|CH<sub>2</sub>CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[ethyl]][[thio]]-<nowiki>phenethylamine</nowiki>
 
|-
 
|-
|[[2C-T-4]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]][[Isopropyl|CHCH<sub>3</sub>CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-(i)-[[propyl]][[thio]]-<nowiki>phenethylamine</nowiki>
+
|[[2C-T-4]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]][[Isopropyl|CHCH<sub>3</sub>CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-(''i'')-[[propyl]][[thio]]-<nowiki>phenethylamine</nowiki>
 
|-
 
|-
 
|[[2C-T-7]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]][[Propyl|CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[propyl]][[thio]]-<nowiki>phenethylamine</nowiki>
 
|[[2C-T-7]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]][[Propyl|CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[propyl]][[thio]]-<nowiki>phenethylamine</nowiki>
Line 134: Line 158:
 
|[[2C-T-8]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]][[Methyl|CH<sub>2</sub>]][[Cyclopropyl|CHCH<sub>2</sub>CH<sub>2</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[cyclopropyl]][[methyl]][[thio]]-<nowiki>phenethylamine</nowiki>
 
|[[2C-T-8]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]][[Methyl|CH<sub>2</sub>]][[Cyclopropyl|CHCH<sub>2</sub>CH<sub>2</sub>]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[cyclopropyl]][[methyl]][[thio]]-<nowiki>phenethylamine</nowiki>
 
|-
 
|-
|[[2C-T-9]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]]-[[(t)-Butyl|(CH<sub>3</sub>)<sub>3</sub>C]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-[[(t)-Butyl]][[thio]]-<nowiki>phenethylamine</nowiki>
+
|[[2C-T-9]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]]-[[Butyl|(CH<sub>3</sub>)<sub>3</sub>C]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-(''t'')-[[Butyl]][[thio]]-<nowiki>phenethylamine</nowiki>
 
|-
 
|-
 
|[[2C-T-21]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]]CH<sub>2</sub>CH<sub>2</sub>[[fluorine|F]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-(2-[[fluoro]][[ethyl]][[thio]])-<nowiki>phenethylamine</nowiki>
 
|[[2C-T-21]]|| || || [[Methoxy|OCH<sub>3</sub>]] || || [[sulfur|S]]CH<sub>2</sub>CH<sub>2</sub>[[fluorine|F]] || [[Methoxy|OCH<sub>3</sub>]] || ||2,5-di[[methoxy]]-4-(2-[[fluoro]][[ethyl]][[thio]])-<nowiki>phenethylamine</nowiki>
 
|}
 
|}
   
  +
== Graphical overview ==
[[Image:Overview Phenethylamines.png|500px]]
+
[[Image:Overview Phenethylamines.png|600px]]
   
 
== See also ==
 
== See also ==
  +
* [[Amphetamines]]
 
 
* [[Catecholamine]]s
 
* [[Catecholamine]]s
 
* [[PiHKAL]]
 
* [[PiHKAL]]
 
* [[Alexander Shulgin]]
 
* [[Alexander Shulgin]]
  +
* [[Phenethyl alcohol]]
* [[Venom (comics)]] The alien symbiote relies on this chemical.
 
  +
* [[2C (psychedelics)|2C's]]
* [[chocolate]] This substance is found in chocolate.
 
   
  +
==References==
== External links ==
 
  +
<references/>
  +
*Baker, G. B., Bornstein, R. A., Rouget, A. C., Ashton, S. E., & et al. (1991). Phenylethylaminergic mechanisms in attention-deficit disorder: Biological Psychiatry Vol 29(1) Jan 1991, 15-22.
  +
*Banoglu, Z. N., & Karayaka, S. (2000). The effects of neuroleptics and diltiazem on experimental schizophrenia model induced by phenylethylamine: Klinik Psikofarmakoloji Bulteni Vol 10(2) 2000, 64-73.
  +
*Berry, M. D. (1995). The neuromodulatory role of 2-phenylethylamine on catecholaminergic systems. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  +
*Bornstein, R. A., & Baker, G. B. (1990). Urinary amines in Tourette's syndrome patients with and without phenylethylamine abnormality: Psychiatry Research Vol 31(3) Mar 1990, 279-286.
  +
*Bornstein, R. A., & Baker, G. B. (1991). Neuropsychological performance and urinary phenylethylamine in Tourette's syndrome: Journal of Neuropsychiatry & Clinical Neurosciences Vol 3(4) Fal 1991, 417-421.
  +
*Bornstein, R. A., Baker, G. B., Carroll, A., King, G., & et al. (1990). Phenylethylamine metabolism in Tourette's syndrome: Journal of Neuropsychiatry & Clinical Neurosciences Vol 2(4) Fal 1990, 408-412.
  +
*Boulton, A. A. (1991). Phenylethylaminergic modulation of catecholaminergic neurotransmission: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 15(2) 1991, 139-156.
  +
*Caffry, E. W., Kissileff, H. R., & Thornton, J. C. (1987). Assessment of the effects of phenylpropanolamine on appetite and food intake: Pharmacology, Biochemistry and Behavior Vol 26(2) Feb 1987, 321-325.
  +
*Chait, L. D., & Johanson, C. E. (1988). Discriminative stimulus effects of caffeine and benzphetamine in amphetamine-trained volunteers: Psychopharmacology Vol 96(3) Nov 1988, 302-308.
  +
*Ciprian-Ollivier, J., Albin, J., Boullosa, O., Cetkovich-Bakmas, M., & et al. (1990). Urinary excretion of phenylethylamine and 3-4 methoxyhydroxyphenylglycol in anxiety disorders: Revista de Psiquiatria de la Facultad de Medicina de Barcelona Vol 17(3) May-Jun 1990, 114-121.
  +
*Ciprian-Ollivier, J., Boullosa, O., & Cetkovich Bakmas, M. (1987). Revision and actualization of the diagnostic sensitivity of the dexamethasone suppression test and the urinary quantification of phenyl-ethyl-amine and 3-Methoxy-4-Hydroxyphenyl-Glycol in the diagnosis of endogenous depression: Acta Psiquiatrica y Psicologica de America Latina Vol 33(2) Jun 1987, 142-148.
  +
*Clark, R., Schlinger, H., & Poling, A. (1990). Discriminative stimulus properties of phenytoin in the pigeon: Determination via a cumulative dosing procedure: Pharmacology, Biochemistry and Behavior Vol 35(3) Mar 1990, 537-541.
  +
*Cloninger, C. R., von Knorring, L., & Oreland, L. (1985). Pentametric distribution of platelet monoamine oxidase activity: Psychiatry Research Vol 15(2) Jun 1985, 133-143.
  +
*Davis, B. A., & Boulton, A. A. (1994). The trace amines and their acidic metabolites in depression: An overview: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 18(1) Jan 1994, 17-45.
  +
*Davis, B. A., Kennedy, S. H., D'Souza, J., Durden, D. A., & et al. (1994). Correlations of plasma and urinary phenylacetic acid and phenylethylamine concentrations with eating behavior and mood rating scores in brofaromine-treated women with bulimia nervosa: Journal of Psychiatry & Neuroscience Vol 19(4) Jul 1994, 282-288.
  +
*Davis, B. A., O'Reilly, R. L., Placatka, C. L., Paterson, I. A., & et al. (1991). Effect of dietary phenylalanine on the plasma concentrations of phenylalanine, phenylethylamine and phenylacetic acid in healthy volunteers: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 15(5) 1991, 611-623.
  +
*Davis, B. A., Shrikhande, S., Paralikar, V. P., Hirsch, S. R., & et al. (1991). Phenylacetic acid in CSF and serum in Indian schizophrenic patients: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 15(1) 1991, 41-47.
  +
*DeLisi, L. E., & et al. (1984). Phenylethylamine excretion in depression: Psychiatry Research Vol 13(3) Nov 1984, 193-201.
  +
*Doat, M. M.-L. (2003). Neuroanatomical localization of brain areas mediating the stimulus properties of the phenethylamine hallucinogen, 2,5-dimethoxy-4-methylamphetamine, in the rat. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  +
*Doat-Meyerhoefer, M. M., Hard, R., Winter, J. C., & Rabin, R. A. (2005). Effects of clozapine and 2,5-dimethoxy-4-methylamphetamine: Pharmacology, Biochemistry and Behavior Vol 81(4) Aug 2005, 750-757.
  +
*Dourish, C. T. (1985). Local application of !b-phenylethylamine to the caudate nucleus of the rat elicits locomotor stimulation: Pharmacology, Biochemistry and Behavior Vol 22(1) Jan 1985, 159-162.
  +
*Dourish, C. T., & Cooper, S. J. (1984). Environmental experience produces qualitative changes in the stimulant effects of !b-phenylethylamine in rats: Psychopharmacology Vol 84(1) Sep 1984, 132-135.
  +
*Dourish, C. T., & Cooper, S. J. (1984). Potentiation of total horizontal activity and ambulation in rats treated with combinations of !b-phenylethylamine and naloxone: Neuropharmacology Vol 23(9) Sep 1984, 1059-1064.
  +
*Dubovsky, S. L., Franks, R. D., Allen, S., & Murphy, J. (1986). Calcium antagonists in mania: A double-blind study of verapamil: Psychiatry Research Vol 18(4) Aug 1986, 309-320.
  +
*Dyck, L. E. (1984). The behavioural effects of phenelzine and phenylethylamine may be due to amine release: Brain Research Bulletin Vol 12(1) Jan 1984, 23-28.
  +
*Eckler, J. R., Chang-Fong, J., Rabin, R. A., Smith, C., Teitler, M., Glennon, R. A., et al. (2003). Behavioral characterization of 2-O-desmethyl and 5-O-desmethyl metabolites of the phenylethylamine hallucinogen DOM: Pharmacology, Biochemistry and Behavior Vol 75(4) Jul 2003, 845-852.
  +
*Eckler, J. R., Reissig, C. J., Rabin, R. A., & Winter, J. C. (2004). A 5-HT-sub(2C) receptor-mediated interaction between 2,5-dimethoxy-4-methylamphetamine and citalopram in the rat: Pharmacology, Biochemistry and Behavior Vol 79(1) Sep 2004, 25-30.
  +
*Fantegrossi, W. E., Harrington, A. W., Eckler, J. R., Arshad, S., Rabin, R. A., Winter, J. C., et al. (2005). Hallucinogen-like actions of 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) in mice and rats: Psychopharmacology Vol 181(3) Sep 2005, 496-503.
  +
*Foltin, R. W., Ward, A. S., Collins, E. D., Haney, M., Hart, C. L., & Fischman, M. W. (2003). The effects of venlafaxine on the subjective, reinforcing, and cardiovascular effects of cocaine in opioid-dependent and non-opioid-dependent humans: Experimental and Clinical Psychopharmacology Vol 11(2) May 2003, 123-130.
  +
*Gianutsos, G., & Chute, S. (1986). Pharmacological changes induced by repeated exposure to phenylethylamine: Pharmacology, Biochemistry and Behavior Vol 25(1) Jul 1986, 129-134.
  +
*Goudie, A. J. (1987). Behaviourally specific interactions between naloxone and beta-phenylethylamine in an operant drug discrimination procedure in rats: Pharmacology, Biochemistry and Behavior Vol 26(1) Jan 1987, 199-202.
  +
*Goudie, A. J., & Newton, T. J. (1985). The puzzle of drug-induced conditioned taste aversion: Comparative studies with cathinone and amphetamine: Psychopharmacology Vol 87(3) Nov 1985, 328-333.
  +
*Gouzoulis, E., von Bardeleben, U., Rupp, A., Kovar, K.-A., & et al. (1993). Neuroendocrine and cardiovascular effects of MDE in healthy volunteers: Neuropsychopharmacology Vol 8(3) May 1993, 187-193.
  +
*Greenshaw, A. J. (1984). !b-Phenylethylamine and reinforcement: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 8(4-6) 1984, 615-620.
  +
*Greenshaw, A. J. (1989). Functional interactions of 2-phenylethylamine and of tryptamine with brain catecholamines: Implications for psychotherapeutic drug action: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 13(3-4) 1989, 431-443.
  +
*Greenshaw, A. J., & Dourish, C. T. (1984). Differential aversive stimulus properties of !b-phenylethylamine and of d-amphetamine: Psychopharmacology Vol 82(3) 1984, 189-193.
  +
*Greenshaw, A. J., Juorio, A. V., & Boulton, A. A. (1985). Behavioral and neurochemical effects of deprenyl and !b-phenylethylamine in Wistar rats: Brain Research Bulletin Vol 15(2) Aug 1985, 183-189.
  +
*Greenshaw, A. J., Sanger, D. J., & Blackman, D. E. (1985). Effects of !d-amphetamine and of !b-phenylethylamine on fixed interval responding maintained by self-regulated lateral hypothalamic stimulation in rats: Pharmacology, Biochemistry and Behavior Vol 23(4) Oct 1985, 519-523.
  +
*Grigg, J. R., & Goyer, P. F. (1986). Phenylpropanolamine anorexiants and affective disorders: Military Medicine Vol 151(7) Jul 1986, 387-388.
  +
*Grunder, G., Wetzel, H., Schlosser, R., & Benkert, O. (1996). Subchronic antidepressant treatment with venlafaxine or imipramine and effects on blood pressure and heart rate: Assessment by automatic 24-hour monitoring: Pharmacopsychiatry Vol 29(2) Mar 1996, 72-78.
  +
*Holloway, F. A., Michaelis, R. C., & Huerta, P. L. (1985). Caffeine-phenylethylamine combinations mimic the amphetamine discriminative cue: Life Sciences Vol 36(8) Feb 1985, 723-730.
  +
*Janssen, P. A. J., Leysen, J. E., Megens, A. A. H. P., & Awouters, F. H. L. (1999). Does phenylethylamine act as an endogenous amphetamine in some patients? : International Journal of Neuropsychopharmacology Vol 2(3) Sep 1999, 229-240.
  +
*Jelokova, J., Rusnak, M., Kubovcakova, L., Buckendahl, P., Krizanova, O., Sabban, E. L., et al. (2002). Stress increases gene expression of phenylethanolamine N-methyltransferase in spleen of rats via pituitary-adrenocortical mechanism: Psychoneuroendocrinology Vol 27(5) Jul 2002, 619-633.
  +
*Jeste, D. V., Stoff, D. M., Rawlings, R., & Wyatt, R. J. (1984). Pharmacogenetics of phenylethylamine: Determination of heritability and genetic transmission of locomotor effects in recombinant inbred strains of mice: Psychopharmacology Vol 84(4) Dec 1984, 537-540.
  +
*Karoum, F., & et al. (1984). Phenylacetic acid excretion in schizophrenia and depression: The origins of PAA in man: Biological Psychiatry Vol 19(2) Feb 1984, 165-178.
  +
*Kaufmann, C. A., Kreek, M. J., Karoum, F., & Chuang, L.-w. (1984). Depression during methadone withdrawal: No role for !b-phenylethylamine: Drug and Alcohol Dependence Vol 13(1) Jan 1984, 21-29.
  +
*Kitanaka, J., Kitanaka, N., Tatsuta, T., & Takemura, M. (2005). 2-phenylethylamine in combination with l-deprenyl lowers the striatal level of dopamine and prolongs the duration of the stereotypy in mice: Pharmacology, Biochemistry and Behavior Vol 82(3) Nov 2005, 488-494.
  +
*Kuroki, T., Tsutsumi, T., Hirano, M., Matsumoto, T., & et al. (1990). Behavioral sensitization to beta-phenylethylamine (PEA): Enduring modifications of specific dopaminergic neuron systems in the rat: Psychopharmacology Vol 102(1) Sep 1990, 5-10.
  +
*Kusaga, A., Yamashita, Y., Koeda, T., Hiratani, M., Kaneko, M., Yamada, S., et al. (2002). Increased urine phenylethylamine after methylphenidate treatment in children with ADHD: Annals of Neurology Vol 52(3) Sep 2002, 371-374.
  +
*Kutscher, C. L. (1988). Phenylethylamine-induced taste aversion in rats and mice: Pharmacology, Biochemistry and Behavior Vol 29(2) Feb 1988, 287-293.
  +
*Langhans, W., Harlacher, R., & Scharrer, E. (1989). Verapamil and indomethacin attenuate endotoxin-induced anorexia: Physiology & Behavior Vol 46(3) Sep 1989, 535-539.
  +
*Lapin, I. P. (1985). Dissimilarities and similarities in interactions of phenibut, baclofen and diazepam with phenylethylamine: Farmakologiya i Toksikologiya Vol 48(4) 1985, 50-54.
  +
*Lapin, I. P. (1988). Phenylethylamine as an endogenous anxiogenic substance and a common link in anxiety, mania, depression, and schizophrenia: Trudy Leningradskogo Nauchno-Issledovatel'skogo Psikhonevrologicheskogo Instituta im V M Bekhtereva Vol 119 1988, 92-101.
  +
*Lapin, I. P. (1993). Anxiogenic effect of phenylethylamine and amphetamine in the elevated plus-maze in mice and its attenuation by ethanol: Pharmacology, Biochemistry and Behavior Vol 44(1) Jan 1993, 241-243.
  +
*Lapin, I. P. (1996). Antagonism by CPP, ()-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, of beta -phenylethylamine (PEA)-induced hypermotility in mice of different strains: Pharmacology, Biochemistry and Behavior Vol 55(2) Oct 1996, 175-178.
  +
*Lapin, I. P., & Slepokurov, M. V. (1991). Anxiogenic activity of phenylethylamine in mice during social isolation test: Farmakologiya i Toksikologiya Vol 54(6) Nov-Dec 1991, 9-11.
  +
*Lapin, I. P., & Yuwiler, A. (1997). Modulation of the inhibitory effect of phenylethylamine on spontaneous motor activity in mice by CPP-()-3-(2-Carboxypiperazin-4-YL)-propyl-1-phosphonic acid: Pharmacology, Biochemistry and Behavior Vol 56(2) Feb 1997, 199-204.
  +
*Lundberg, P.-A., Oreland, L., & Engberg, G. (1985). Inhibition of locus coeruleus neuronal activity by beta-phenylethylamine: Life Sciences Vol 36(19) May 1985, 1889-1896.
  +
*McGrath, P. J., Cooper, T. B., Quitkin, F. M., & Klein, D. F. (1988). Effects of imipramine and phenelzine on plasma PEA levels: Psychiatry Research Vol 26(2) Nov 1988, 239.
  +
*McMahon, L. R., & Wellman, P. J. (1996). Effects of systemic phenylpropanolamine and fenfluramine on serotonin activity within rat paraventricular hypothalamus: Physiology & Behavior Vol 59(1) Jan 1996, 63-69.
  +
*McMahon, L. R., & Wellman, P. J. (1997). Assessment of the role of oxytocin receptors in phenylpropanolamine-induced anorexia in rats: Pharmacology, Biochemistry and Behavior Vol 57(4) Aug 1997, 767-770.
  +
*McManus, D. J., Mousseau, D. D., Paetsch, P. R., Wishart, T. B., & et al. (1991). !b-Adrenoceptors and antidepressants: Possible 2-phenylethylamine mediation of chronic phenelzine effects: Biological Psychiatry Vol 30(11) Dec 1991, 1122-1130.
  +
*Mefford, I. N., Lister, R. G., Ota, M., & Linnoila, M. (1990). Antagonism of ethanol intoxication in rats by inhibitors of phenylethanolamine N-methyltransferase: Alcoholism: Clinical and Experimental Research Vol 14(1) Feb 1990, 53-57.
  +
*Michaelis, R. C., Holloway, F. A., Bird, D. C., & Huerta, P. L. (1987). Interactions between stimulants: Effects on DRL performance and lethality in rats: Pharmacology, Biochemistry and Behavior Vol 27(2) Jun 1987, 299-306.
  +
*Milgram, N. W., Ivy, G. O., Murphy, M. P., Head, E., & et al. (1995). Effects of chronic oral administration of L-deprenyl in the dog: Pharmacology, Biochemistry and Behavior Vol 51(2-3) Jun-Jul 1995, 421-428.
  +
*Moises, H. W., Waldmeier, P., & Beckmann, H. (1986). Urinary phenylethylamine correlates positively with hypomania, and negatively with depression, paranoia, and social introversion on the MMPI: European Archives of Psychiatry & Neurological Sciences Vol 236(2) Oct 1986, 83-87.
  +
*Mosnaim, A. D., Freitag, F. G., Ignacio, R., Salas, M. A., & et al. (1996). Apparent lack of correlation between tyramine and phenylethylamine content and the occurrence of food-precipitated migraine:Reexamination of a variety of food products frequently consumed in the United States and commonly restricted in tyramine-free diets: Headache Quarterly Vol 7(3) 1996, 239-249.
  +
*Mutovkina, L. G., & Lapin, I. P. (1990). Attenuation of effects of phenylethylamine on social and individual behaviour in mice by ethanol pretreatment: Alcohol and Alcoholism Vol 25(4) 1990, 417-420.
  +
*Nakagawara, M. (1992). !b-phenylethylamine and noradrenergic function in depression: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 16(1) Jan 1992, 45-53.
  +
*Nakagawara, M., Shioe, K., Hirano, M., & Sato, Y. (1993). beta -Phenylethylamine, neuropeptide Y, and noradrenergic function in depression. Tokyo, Japan; Philadelphia, PA: Seiwa Shoten; Brunner/Mazel.
  +
*Nash, J. F., & Maickel, R. P. (1985). Effects of exposure to stressful stimuli on the free-choice consumption of various phenethylamines by rats: Alcohol & Drug Research Vol 6(6) 1985-1986, 403-415.
  +
*Nichols, D. E. (1986). Studies of the relationship between molecular structure and hallucinogenic activity: Pharmacology, Biochemistry and Behavior Vol 24(2) Feb 1986, 335-340.
  +
*O'Reilly, R. L., & Davis, B. A. (1994). Phenylethylamine and schizophrenia: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 18(1) Jan 1994, 63-75.
  +
*O'Reilly, R. L., Davis, B. A., Durden, D. A., Thorpe, L., & et al. (1991). Plasma phenylethylamine in schizophrenic patients: Biological Psychiatry Vol 30(2) Jul 1991, 145-150.
  +
*Ortmann, R., & et al. (1984). Phenylethylamine-induced stereotypies in the rat: A behavioral test system for assessment of MAO-B inhibitors: Psychopharmacology Vol 84(1) Sep 1984, 22-27.
  +
*Ozbakis-Dengiz, G., & Banoglu, Z. N. (2001). Effects of melatonin on phenylethamine-induced locomotor activity in rats: Klinik Psikofarmakoloji Bulteni Vol 11(4) 2001, 225-229.
  +
*Parrish, J. C. (2007). Toward a molecular understanding of hallucinogen action (2-arachidonoyl glycerol). Dissertation Abstracts International: Section B: The Sciences and Engineering.
  +
*Philips, S. R. (1986). In vivo release of endogenous dopamine from rat caudate nucleus by !b-phenylethylamine and !a,!a,-dideutero-!b-phenylethylamine: Life Sciences Vol 39(25) Dec 1986, 2395-2400.
  +
*Popplewell, D. A., Coffey, P. J., Montgomery, A. M., & Burton, M. J. (1986). A behavioural and pharmacological examination of phenylethylamine-induced anorexia and hyperactivity: Comparisons with amphetamine: Pharmacology, Biochemistry and Behavior Vol 25(4) Oct 1986, 711-716.
  +
*Rasmussen, K., & Aghajanian, G. K. (1988). Potency of antipsychotics in reversing the effects of a hallucinogenic drug on locus coeruleus neurons correlates with 5-HT-sub-2 binding affinity: Neuropsychopharmacology Vol 1(2) May 1988, 101-107.
  +
*Regina, M. J., Winter, J. C., & Rabin, R. A. (2003). Characterization of a novel effect of serotonin 5-HT-sub(1A) and 5-HT-sub(2A) receptors: Increasing cGMP levels in rat frontal cortex: Neuropharmacology Vol 45(8) Dec 2003, 1041-1049.
  +
*Rempel, N. L., Callaway, C. W., & Geyer, M. A. (1993). Serotonin-sub(1B ) receptor activation mimics behavioral effects of presynaptic serotonin release: Neuropsychopharmacology Vol 8(3) May 1993, 201-211.
  +
*Robert, J. J., Orosco, M., Rouch, C., & Cohen, Y. (1991). Effects of dexfenfluramine and opioid peptides, alone or in combination, on food intake and brain serotonin turnover in rats: Pharmacology, Biochemistry and Behavior Vol 38(4) Apr 1991, 775-780.
  +
*Rosofsky, M., & Geary, N. (1989). Phenylpropanolamine and amphetamine disrupt postprandial satiety in rats: Pharmacology, Biochemistry and Behavior Vol 34(4) Dec 1989, 797-803.
  +
*Sabelli, H. (2002). Phenylethylamine deficit and replacement in depressive illness. Philadelphia, PA: Lippincott Williams & Wilkins Publishers.
  +
*Sabelli, H., Fahrer, R., Medina, R. D., & Fragola, E. O. (1994). Phenylethylamine relieves depression after selective MAO-B inhibition: Journal of Neuropsychiatry & Clinical Neurosciences Vol 6(2) Spr 1994, 203.
  +
*Sabelli, H. C., & et al. (1986). Clinical studies on the phenylethylamine hypothesis of affective disorder: Urine and blood phenylacetic acid and phenylalanine dietary supplements: Journal of Clinical Psychiatry Vol 47(2) Feb 1986, 66-70.
  +
*Sabelli, H. C., & Javaid, J. I. (1995). Phenylethylamine modulation of affect: Therapeutic and diagnostic implications: Journal of Neuropsychiatry & Clinical Neurosciences Vol 7(1) Win 1995, 6-14.
  +
*Sabelli, H. C., Javaid, J. I., Fawcett, J., Kravitz, H. M., & et al. (1990). Urinary phenylacetic acid in panic disorder with and without depression: Acta Psychiatrica Scandinavica Vol 82(1) Jul 1990, 14-16.
  +
*Sannerud, C. A., Kaminski, B. J., & Griffiths, R. R. (1996). Intravenous self-injection of four novel phenethylamines in baboons: Behavioural Pharmacology Vol 7(4) Aug 1996, 315-323.
  +
*Satoi, M., Matsuishi, T., Yamada, S., Yamashita, Y., Ohtaki, E., Mori, K., et al. (2000). Decreased cerebrospinal fluid levels of beta -phenylethylamine in patients with Rett syndrome: Annals of Neurology Vol 47(6) Jun 2000, 801-803.
  +
*Schifano, F., Deluca, P., Agosti, L., Martinotti, G., & Corkery, J. M. (2005). New trends in the cyber and street market of recreational drugs? The case of 2C-T-7 ('Blue Mystic'): Journal of Psychopharmacology Vol 19(6) Nov 2005, 675-679.
  +
*Scorza, M. C., Reyes-Parada, M., Silveira, R., Viola, H., Medina, J. H., Viana, M. B., et al. (1996). Behavioral effects of the putative anxiolytic (+)-1-(2,5-dimethoxy-4-ethylthiophenyl)-2-aminopropane (ALEPH-2) in rats and mice: Pharmacology, Biochemistry and Behavior Vol 54(2) Jun 1996, 355-361.
  +
*Semba, J.-i., Nankai, M., Maruyama, Y., Kaneno, S., & et al. (1988). Increase in urinary !b-phenylethylamine preceding the switch from mania to depression: A "rapid cycler." Journal of Nervous and Mental Disease Vol 176(2) Feb 1988, 116-119.
  +
*Shannon, H. E., & Thompson, W. A. (1984). Behavior maintained under fixed-interval and second-order schedules by intravenous injections of endogenous noncatecholic phenylethylamines in dogs: Journal of Pharmacology and Experimental Therapeutics Vol 228(3) Mar 1984, 691-695.
  +
*Sharma, R. P., Faull, K., Javaid, J. I., & Davis, J. M. (1995). Cerebrospinal fluid levels of phenylacetic acid in mental illness: Behavioral associations and response to neuroleptic treatment: Acta Psychiatrica Scandinavica Vol 91(5) May 1995, 293-298.
  +
*Shimazu, S., & Miklya, I. (2004). Pharmacological studies with endogenous enhancer substances: beta -phenylethylamine, tryptamine, and their synthetic derivatives: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 28(3) May 2004, 421-427.
  +
*Shirkande, S., O'Reilly, R., Davis, B., Durden, D., & et al. (1995). Plasma phenylethylamine levels of schizophrenia patients: The Canadian Journal of Psychiatry / La Revue canadienne de psychiatrie Vol 40(4) May 1995, 221.
  +
*Smith, T. M. (1985). [-3H]-Flunitrazepam binding in the presence of !b-phenylethylamine and its metabolites: Pharmacology, Biochemistry and Behavior Vol 23(6) Dec 1985, 965-967.
  +
*Smythies, J. R., & Sykes, E. A. (1966). Structure-activity relationship studies on mescaline: The effect of dimethoxyphenylethylamine and N:N-dimethyl mescaline on the conditioned avoidance response in the rat: Psychopharmacologia 8(5) 1966, 324-330.
  +
*Snoddy, A. M., Heckathorn, D., & Tessel, R. E. (1985). Cold-restraint stress and urinary endogenous !b-phenylethylamine excretion in rats: Pharmacology, Biochemistry and Behavior Vol 22(3) Mar 1985, 497-500.
  +
*Stamford, J. A., Kruk, Z. L., & Millar, J. (1986). An in vivo voltammetric comparison of the effects of three psychomotor stimulants on electrically evoked neostriatal dopamine release: Brain Research Vol 366(1-2) Feb 1986, 350-353.
  +
*Stoff, D. M., & et al. (1984). Behavioral supersensitivity to !b-phenylethylamine after chronic administration of haloperidol: Biological Psychiatry Vol 19(1) Jan 1984, 101-106.
  +
*Stolaroff, M. J. (1990). Letter to the editor: Journal of Psychoactive Drugs Vol 22(3) Jul-Sep 1990, 379.
  +
*Suchowersky, O., & DeVries, J. D. (1990). Interaction of fluoxetine and selegiline: The Canadian Journal of Psychiatry / La Revue canadienne de psychiatrie Vol 35(6) Aug 1990, 571-572.
  +
*Szymanski, H. V., & et al. (1985). Dihydropteridine reductase in schizophrenic patients: Psychiatry Research Vol 15(2) Jun 1985, 115-119.
  +
*Szymanski, H. V., Naylor, E. W., & Karoum, F. (1987). Plasma phenylethylamine and phenylalanine in chronic schizophrenic patients: Biological Psychiatry Vol 22(2) Feb 1987, 194-198.
  +
*Taylor, A., Dore, C., & Glover, V. (1996). Urinary phenylethylamine and cortisol levels in the early puerperium: Journal of Affective Disorders 37(2-3) Apr 1996, 137-142.
  +
*Theofilopoulos, N., Flaskos, J., & George, A. J. (1991). Urinary phenylethylamine excretion in phobic and obsessive patients: Human Psychopharmacology: Clinical and Experimental Vol 6(1) Mar 1991, 43-48.
  +
*Wellman, P. J. (1990). A review of the physiological bases of the anorexic action of phenylpropanolamine (d,l-norephedrine): Neuroscience & Biobehavioral Reviews Vol 14(3) Fal 1990, 339-355.
  +
*Wellman, P. J., & Levy, A. (1988). Inhibition of feeding and hoarding behaviors by phenylpropanolamine in the adult rat: Pharmacology, Biochemistry and Behavior Vol 29(1) Jan 1988, 79-81.
  +
*Wellman, P. J., & Sellers, T. L. (1986). Weight loss induced by chronic phenylpropanolamine: Anorexia and brown adipose tissue thermogenesis: Pharmacology, Biochemistry and Behavior Vol 24(3) Mar 1986, 605-611.
  +
*Wellman, P. J., Tow, S., & McMahon, L. (1995). Isobolographic assessment of the effects of combinations of phenylpropanolamine and fenfluramine on food intake in rats: Pharmacology, Biochemistry and Behavior Vol 50(2) Feb 1995, 287-291.
  +
*Wolf, M. E., Mosnaim, A. D., Callaghan, O. H., Chevesich, J., & et al. (1987). Phenylethylamine metabolism to tyramine by postmortem human brain preparations: Life Sciences Vol 40(5) Feb 1987, 489-494.
  +
*Wong, D. L., Siddall, B., & Wang, W. (1995). Hormonal control of rat adrenal phenylethanolamine N-methyltransferase: Enzyme activity, the final critical pathway: Neuropsychopharmacology Vol 13(3) Nov 1995, 223-234.
  +
*Wood, D. M., Lal, H., & Emmett-Oglesby, M. W. (1984). Acquisition and recovery of tolerance to the discriminative stimulus properties of cocaine: Neuropharmacology Vol 23(12A) Dec 1984, 1419-1423.
  +
*Woolverton, W. L. (1986). A review of the effects of repeated administration of selected phenylethylamines: Drug and Alcohol Dependence Vol 17(2-3) Jun 1986, 143-150.
  +
*Woolverton, W. L., & English, J. A. (1997). Effects of some phenylethylamines in rhesus monkeys trained to discriminate (+)-amphetamine from saline: Drug and Alcohol Dependence Vol 44(2-3) Mar 1997, 79-85.
  +
*Woolverton, W. L., Johanson, C. E., de la Garza, R., Ellis, S., & et al. (1986). Behavioral and neurochemical evaluation of phenylpropanolamine: Journal of Pharmacology and Experimental Therapeutics Vol 237(3) Jun 1986, 926-930.
  +
*Wu, S., & Comings, D. E. (1999). Two single nucleotide polymorphisms in the promoter region of the human phenylethanolamine N-methyltransferase PNMT gene: Psychiatric Genetics Vol 9(4) Dec 1999, 187-188.
  +
*Young, R., Bondarev, M., & Glennon, R. A. (1999). An examination of isometric phenylpropanolamines in (-)ephedrine-trained rats: Drug and Alcohol Dependence Vol 57(1) Nov 1999, 1-6.
  +
*Zametkin, A. J., & et al. (1984). Phenylethylamine excretion in attention deficit disorder: Journal of the American Academy of Child Psychiatry Vol 23(3) May 1984, 310-314.
  +
*Zhu, M.-Y. (1995). The modulatory role of 2-phenylethylamine on dopamine transmission and the involvement of dopamine receptors in the regulation of aromatic l-amino acid decarboxylase. Dissertation Abstracts International: Section B: The Sciences and Engineering.
   
  +
 
== External links ==
  +
* [http://www.sciencelab.com/xMSDS-Phenethylamine-9927690 MSDS for phenethylamine]
 
* [http://www.erowid.org/library/books_online/pihkal/pihkal.shtml Book II of PiHKAL] online
 
* [http://www.erowid.org/library/books_online/pihkal/pihkal.shtml Book II of PiHKAL] online
 
* Review and summary of PiHKAL, including table of 300+ phenethylamines: [http://www.erowid.org/archive/hyperreal/drugs/psychedelics/phenethylamines/pihkal.review ascii] [http://www.erowid.org/archive/hyperreal/drugs/psychedelics/phenethylamines/pihkal.review.ps postscript]
 
* Review and summary of PiHKAL, including table of 300+ phenethylamines: [http://www.erowid.org/archive/hyperreal/drugs/psychedelics/phenethylamines/pihkal.review ascii] [http://www.erowid.org/archive/hyperreal/drugs/psychedelics/phenethylamines/pihkal.review.ps postscript]
 
* [http://www.erowid.org/archive/rhodium/chemistry/pihkaltour/ A Structural Tour of PiHKAL]
 
* [http://www.erowid.org/archive/rhodium/chemistry/pihkaltour/ A Structural Tour of PiHKAL]
  +
{{ChemicalSources}}
 
== Categorization ==
 
   
 
{{Phenethylamines}}
 
{{Phenethylamines}}
 
{{Hallucinogenic phenethylamines}}
 
{{Hallucinogenic phenethylamines}}
  +
{{PiHKAL}}
  +
 
[[Category:Amines]]
  +
[[Category:Phenethylamines| ]]
   
[[Category:Phenethylamines]]
 
   
[[cs:Fenylethylamin]]
 
[[de:Phenethylamin]]
 
[[es:Fenetilamina]]
 
[[fr:Phényléthylamine]]
 
[[pl:Fenyloetyloamina]]
 
[[fi:Fenetyyliamiini]][http://www.batbat.batcave.net/phentermine phentermine]
 
[[sv:Fenetylamin]]
 
 
{{enWP|Phenethylamine}}
 
{{enWP|Phenethylamine}}

Latest revision as of 00:52, 25 April 2008

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


Phenethylamine [1]
Chemical structure of Phenethylamine
Phenethylamine-3d
Chemical name 2-Phenylethylamine
Other names Phenethylamine
β-Phenylethylamine
2-Phenyl-1-aminoethane
β-Aminoethylamine
2-Phenylethanamine
Chemical formula C8H11N
Molecular mass 121.18 g/mol
CAS number [64-04-0]
Density 0.964 g/cm3
Melting point -60 °C
Boiling point 194.5-195 °C
SMILES c1ccccc1CCN
NFPA 704
NFPA 704
2
2
2
 


Disclaimer and references

Phenethylamine (PEA), or β-Phenylethylamine, is an alkaloid and monoamine. In the human brain, it is believed to function as a neuromodulator or neurotransmitter (trace amine). Phenethylamine is a natural compound biosynthesized from the amino acid phenylalanine by enzymatic decarboxylation. It is also found in many foods such as chocolate, especially after microbial fermentation. It has been suggested that phenethylamine from food may have psychoactive effects in sufficient quantities. However, it is quickly metabolized by the enzyme MAO-B, preventing significant concentrations from reaching the brain.

Substituted phenethylamines are a broad and diverse class of compounds that include neurotransmitters, hormones, stimulants, hallucinogens, entactogens, anorectics, bronchodilators, and antidepressants. The phenethylamine structure can also be found as part of more complex ring systems such as the ergoline system of LSD or the morphinan system of morphine.

Chemistry

Phenethylamine is an aromatic amine which is a colorless liquid at room temperature. It is soluble in water, ethanol, and ether.[1] Similar to other low molecular weight amines, it has a fishy odor. Upon exposure to air, it forms a solid carbonate salt with carbon dioxide. Phenethylamine is strongly basic and forms a stable crystalline hydrochloride salt with a melting point of 217 °C. Phenethylamine is also a skin irritant and possible sensitizer.

Chocolate theory of love

In the early 1980s, chemistry of love researcher Michael Libowitz, author of the popular 1983 book The Chemistry of Love, remarked to reporters that “chocolate was loaded with PEA”. This became the focus for an article in The New York Times, which was then taken up by the wire services, then by magazine free-lancers, and evolved into the now eponymous “chocolate theory of love”.[2]

Substituted phenethylamines

Phenethylamine rests

General structure of phenethylamines and amphetamines (see the table below).

Substituted phenethylamines carry additional chemical modifications at the phenyl ring, the sidechain, or the amino group:

Pharmacology

Many substituted phenethylamines are pharmacologically active drugs due to their similarity to the monoamine neurotransmitters:

Substitution table

Some of the more important phenethylamines are tabulated below. For simplicity, the stereochemistry of the sidechain is not covered in the table. Hundreds of other simple synthetic phenethylamines are known. This is due in part to the pioneering work of Alexander Shulgin, much of which is described in the book PiHKAL.

Substituted phenethylamines, tabulated by structure
Short Name Rα Rβ R2 R3 R4 R5 RN Full Name
Tyramine OH 4-hydroxy-phenethylamine
Dopamine OH OH 3,4-dihydroxy-phenethylamine
Epinephrine (Adrenaline) OH OH OH CH3 β,3,4-trihydroxy-N-methyl-phenethylamine
Norepinephrine (Noradrenaline) OH OH OH β,3,4-trihydroxyphenethylamine
Salbutamol OH OH CH2OH C(CH3)3 β,4-dihydroxy-3-hydroxymethyl-N-(t)-butyl-phenethylamine
Beta-Methyl-phenethylamine CH3 β-methyl-phenethylamine
Amphetamine CH3 α-methyl-phenethylamine
Methamphetamine CH3 CH3 N-methyl-amphetamine
Methylphenidate N,α-butylene-β-methoxycarbonyl-phenethylamine
Ephedrine,
pseudoephedrine
CH3 OH CH3 N-methyl-β-hydroxy-amphetamine
Cathine CH3 OH β-hydroxy-amphetamine
Cathinone CH3 =O β-keto-amphetamine
Methcathinone CH3 =O CH3 N-methyl-β-keto-amphetamine
Bupropion CH3 =O Cl C(CH3)3 3-chloro-N-(t)-butyl-β-keto-amphetamine
Fenfluramine CH3 CF3 CH2CH3 3-trifluoromethyl-N-ethyl-amphetamine
Phentermine CH3,CH3 α,α-dimethyl-phenethylamine
Mescaline OCH3 OCH3 OCH3 3,4,5-trimethoxy-phenethylamine
MDA CH3 -O-CH2-O- 3,4-methylenedioxy-amphetamine
MDMA CH3 -O-CH2-O- CH3 3,4-methylenedioxy-N-methyl-amphetamine
MDMC CH3 =O -O-CH2-O- CH3 3,4-methylenedioxy-N-methyl-β-keto-amphetamine
DOM CH3 OCH3 CH3 OCH3 2,5-dimethoxy-4-methyl-amphetamine
DOB CH3 OCH3 Br OCH3 2,5-dimethoxy-4-bromo-amphetamine
DON CH3 OCH3 NO2 OCH3 2,5-dimethoxy-4-nitro-amphetamine
2C-B OCH3 Br OCH3 2,5-dimethoxy-4-bromo-phenethylamine
2C-C OCH3 Cl OCH3 2,5-dimethoxy-4-chloro-phenethylamine
DOI CH3 OCH3 I OCH3 2,5-dimethoxy-4-iodo-amphetamine
2C-I OCH3 I OCH3 2,5-dimethoxy-4-iodo-phenethylamine
2C-D OCH3 CH3 OCH3 2,5-dimethoxy-4-methyl-phenethylamine
2C-E OCH3 CH2CH3 OCH3 2,5-dimethoxy-4-ethyl-phenethylamine
2C-F OCH3 F OCH3 2,5-dimethoxy-4-Fluoro-phenethylamine
2C-N OCH3 NO2 OCH3 2,5-dimethoxy-4-Nitro-phenethylamine
2C-T-2 OCH3 SCH2CH3 OCH3 2,5-dimethoxy-4-ethylthio-phenethylamine
2C-T-4 OCH3 SCHCH3CH3 OCH3 2,5-dimethoxy-4-(i)-propylthio-phenethylamine
2C-T-7 OCH3 SCH2CH2CH3 OCH3 2,5-dimethoxy-4-propylthio-phenethylamine
2C-T-8 OCH3 SCH2CHCH2CH2 OCH3 2,5-dimethoxy-4-cyclopropylmethylthio-phenethylamine
2C-T-9 OCH3 S-(CH3)3C OCH3 2,5-dimethoxy-4-(t)-Butylthio-phenethylamine
2C-T-21 OCH3 SCH2CH2F OCH3 2,5-dimethoxy-4-(2-fluoroethylthio)-phenethylamine

Graphical overview

Overview Phenethylamines

See also

References

  1. 1.0 1.1 Merck Index, 12th Edition, 7371.
  2. Liebowitz, Michael, R. (1983). The Chemistry of Love. Boston: Little, Brown, & Co.
  • Baker, G. B., Bornstein, R. A., Rouget, A. C., Ashton, S. E., & et al. (1991). Phenylethylaminergic mechanisms in attention-deficit disorder: Biological Psychiatry Vol 29(1) Jan 1991, 15-22.
  • Banoglu, Z. N., & Karayaka, S. (2000). The effects of neuroleptics and diltiazem on experimental schizophrenia model induced by phenylethylamine: Klinik Psikofarmakoloji Bulteni Vol 10(2) 2000, 64-73.
  • Berry, M. D. (1995). The neuromodulatory role of 2-phenylethylamine on catecholaminergic systems. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Bornstein, R. A., & Baker, G. B. (1990). Urinary amines in Tourette's syndrome patients with and without phenylethylamine abnormality: Psychiatry Research Vol 31(3) Mar 1990, 279-286.
  • Bornstein, R. A., & Baker, G. B. (1991). Neuropsychological performance and urinary phenylethylamine in Tourette's syndrome: Journal of Neuropsychiatry & Clinical Neurosciences Vol 3(4) Fal 1991, 417-421.
  • Bornstein, R. A., Baker, G. B., Carroll, A., King, G., & et al. (1990). Phenylethylamine metabolism in Tourette's syndrome: Journal of Neuropsychiatry & Clinical Neurosciences Vol 2(4) Fal 1990, 408-412.
  • Boulton, A. A. (1991). Phenylethylaminergic modulation of catecholaminergic neurotransmission: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 15(2) 1991, 139-156.
  • Caffry, E. W., Kissileff, H. R., & Thornton, J. C. (1987). Assessment of the effects of phenylpropanolamine on appetite and food intake: Pharmacology, Biochemistry and Behavior Vol 26(2) Feb 1987, 321-325.
  • Chait, L. D., & Johanson, C. E. (1988). Discriminative stimulus effects of caffeine and benzphetamine in amphetamine-trained volunteers: Psychopharmacology Vol 96(3) Nov 1988, 302-308.
  • Ciprian-Ollivier, J., Albin, J., Boullosa, O., Cetkovich-Bakmas, M., & et al. (1990). Urinary excretion of phenylethylamine and 3-4 methoxyhydroxyphenylglycol in anxiety disorders: Revista de Psiquiatria de la Facultad de Medicina de Barcelona Vol 17(3) May-Jun 1990, 114-121.
  • Ciprian-Ollivier, J., Boullosa, O., & Cetkovich Bakmas, M. (1987). Revision and actualization of the diagnostic sensitivity of the dexamethasone suppression test and the urinary quantification of phenyl-ethyl-amine and 3-Methoxy-4-Hydroxyphenyl-Glycol in the diagnosis of endogenous depression: Acta Psiquiatrica y Psicologica de America Latina Vol 33(2) Jun 1987, 142-148.
  • Clark, R., Schlinger, H., & Poling, A. (1990). Discriminative stimulus properties of phenytoin in the pigeon: Determination via a cumulative dosing procedure: Pharmacology, Biochemistry and Behavior Vol 35(3) Mar 1990, 537-541.
  • Cloninger, C. R., von Knorring, L., & Oreland, L. (1985). Pentametric distribution of platelet monoamine oxidase activity: Psychiatry Research Vol 15(2) Jun 1985, 133-143.
  • Davis, B. A., & Boulton, A. A. (1994). The trace amines and their acidic metabolites in depression: An overview: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 18(1) Jan 1994, 17-45.
  • Davis, B. A., Kennedy, S. H., D'Souza, J., Durden, D. A., & et al. (1994). Correlations of plasma and urinary phenylacetic acid and phenylethylamine concentrations with eating behavior and mood rating scores in brofaromine-treated women with bulimia nervosa: Journal of Psychiatry & Neuroscience Vol 19(4) Jul 1994, 282-288.
  • Davis, B. A., O'Reilly, R. L., Placatka, C. L., Paterson, I. A., & et al. (1991). Effect of dietary phenylalanine on the plasma concentrations of phenylalanine, phenylethylamine and phenylacetic acid in healthy volunteers: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 15(5) 1991, 611-623.
  • Davis, B. A., Shrikhande, S., Paralikar, V. P., Hirsch, S. R., & et al. (1991). Phenylacetic acid in CSF and serum in Indian schizophrenic patients: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 15(1) 1991, 41-47.
  • DeLisi, L. E., & et al. (1984). Phenylethylamine excretion in depression: Psychiatry Research Vol 13(3) Nov 1984, 193-201.
  • Doat, M. M.-L. (2003). Neuroanatomical localization of brain areas mediating the stimulus properties of the phenethylamine hallucinogen, 2,5-dimethoxy-4-methylamphetamine, in the rat. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Doat-Meyerhoefer, M. M., Hard, R., Winter, J. C., & Rabin, R. A. (2005). Effects of clozapine and 2,5-dimethoxy-4-methylamphetamine: Pharmacology, Biochemistry and Behavior Vol 81(4) Aug 2005, 750-757.
  • Dourish, C. T. (1985). Local application of !b-phenylethylamine to the caudate nucleus of the rat elicits locomotor stimulation: Pharmacology, Biochemistry and Behavior Vol 22(1) Jan 1985, 159-162.
  • Dourish, C. T., & Cooper, S. J. (1984). Environmental experience produces qualitative changes in the stimulant effects of !b-phenylethylamine in rats: Psychopharmacology Vol 84(1) Sep 1984, 132-135.
  • Dourish, C. T., & Cooper, S. J. (1984). Potentiation of total horizontal activity and ambulation in rats treated with combinations of !b-phenylethylamine and naloxone: Neuropharmacology Vol 23(9) Sep 1984, 1059-1064.
  • Dubovsky, S. L., Franks, R. D., Allen, S., & Murphy, J. (1986). Calcium antagonists in mania: A double-blind study of verapamil: Psychiatry Research Vol 18(4) Aug 1986, 309-320.
  • Dyck, L. E. (1984). The behavioural effects of phenelzine and phenylethylamine may be due to amine release: Brain Research Bulletin Vol 12(1) Jan 1984, 23-28.
  • Eckler, J. R., Chang-Fong, J., Rabin, R. A., Smith, C., Teitler, M., Glennon, R. A., et al. (2003). Behavioral characterization of 2-O-desmethyl and 5-O-desmethyl metabolites of the phenylethylamine hallucinogen DOM: Pharmacology, Biochemistry and Behavior Vol 75(4) Jul 2003, 845-852.
  • Eckler, J. R., Reissig, C. J., Rabin, R. A., & Winter, J. C. (2004). A 5-HT-sub(2C) receptor-mediated interaction between 2,5-dimethoxy-4-methylamphetamine and citalopram in the rat: Pharmacology, Biochemistry and Behavior Vol 79(1) Sep 2004, 25-30.
  • Fantegrossi, W. E., Harrington, A. W., Eckler, J. R., Arshad, S., Rabin, R. A., Winter, J. C., et al. (2005). Hallucinogen-like actions of 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) in mice and rats: Psychopharmacology Vol 181(3) Sep 2005, 496-503.
  • Foltin, R. W., Ward, A. S., Collins, E. D., Haney, M., Hart, C. L., & Fischman, M. W. (2003). The effects of venlafaxine on the subjective, reinforcing, and cardiovascular effects of cocaine in opioid-dependent and non-opioid-dependent humans: Experimental and Clinical Psychopharmacology Vol 11(2) May 2003, 123-130.
  • Gianutsos, G., & Chute, S. (1986). Pharmacological changes induced by repeated exposure to phenylethylamine: Pharmacology, Biochemistry and Behavior Vol 25(1) Jul 1986, 129-134.
  • Goudie, A. J. (1987). Behaviourally specific interactions between naloxone and beta-phenylethylamine in an operant drug discrimination procedure in rats: Pharmacology, Biochemistry and Behavior Vol 26(1) Jan 1987, 199-202.
  • Goudie, A. J., & Newton, T. J. (1985). The puzzle of drug-induced conditioned taste aversion: Comparative studies with cathinone and amphetamine: Psychopharmacology Vol 87(3) Nov 1985, 328-333.
  • Gouzoulis, E., von Bardeleben, U., Rupp, A., Kovar, K.-A., & et al. (1993). Neuroendocrine and cardiovascular effects of MDE in healthy volunteers: Neuropsychopharmacology Vol 8(3) May 1993, 187-193.
  • Greenshaw, A. J. (1984). !b-Phenylethylamine and reinforcement: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 8(4-6) 1984, 615-620.
  • Greenshaw, A. J. (1989). Functional interactions of 2-phenylethylamine and of tryptamine with brain catecholamines: Implications for psychotherapeutic drug action: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 13(3-4) 1989, 431-443.
  • Greenshaw, A. J., & Dourish, C. T. (1984). Differential aversive stimulus properties of !b-phenylethylamine and of d-amphetamine: Psychopharmacology Vol 82(3) 1984, 189-193.
  • Greenshaw, A. J., Juorio, A. V., & Boulton, A. A. (1985). Behavioral and neurochemical effects of deprenyl and !b-phenylethylamine in Wistar rats: Brain Research Bulletin Vol 15(2) Aug 1985, 183-189.
  • Greenshaw, A. J., Sanger, D. J., & Blackman, D. E. (1985). Effects of !d-amphetamine and of !b-phenylethylamine on fixed interval responding maintained by self-regulated lateral hypothalamic stimulation in rats: Pharmacology, Biochemistry and Behavior Vol 23(4) Oct 1985, 519-523.
  • Grigg, J. R., & Goyer, P. F. (1986). Phenylpropanolamine anorexiants and affective disorders: Military Medicine Vol 151(7) Jul 1986, 387-388.
  • Grunder, G., Wetzel, H., Schlosser, R., & Benkert, O. (1996). Subchronic antidepressant treatment with venlafaxine or imipramine and effects on blood pressure and heart rate: Assessment by automatic 24-hour monitoring: Pharmacopsychiatry Vol 29(2) Mar 1996, 72-78.
  • Holloway, F. A., Michaelis, R. C., & Huerta, P. L. (1985). Caffeine-phenylethylamine combinations mimic the amphetamine discriminative cue: Life Sciences Vol 36(8) Feb 1985, 723-730.
  • Janssen, P. A. J., Leysen, J. E., Megens, A. A. H. P., & Awouters, F. H. L. (1999). Does phenylethylamine act as an endogenous amphetamine in some patients? : International Journal of Neuropsychopharmacology Vol 2(3) Sep 1999, 229-240.
  • Jelokova, J., Rusnak, M., Kubovcakova, L., Buckendahl, P., Krizanova, O., Sabban, E. L., et al. (2002). Stress increases gene expression of phenylethanolamine N-methyltransferase in spleen of rats via pituitary-adrenocortical mechanism: Psychoneuroendocrinology Vol 27(5) Jul 2002, 619-633.
  • Jeste, D. V., Stoff, D. M., Rawlings, R., & Wyatt, R. J. (1984). Pharmacogenetics of phenylethylamine: Determination of heritability and genetic transmission of locomotor effects in recombinant inbred strains of mice: Psychopharmacology Vol 84(4) Dec 1984, 537-540.
  • Karoum, F., & et al. (1984). Phenylacetic acid excretion in schizophrenia and depression: The origins of PAA in man: Biological Psychiatry Vol 19(2) Feb 1984, 165-178.
  • Kaufmann, C. A., Kreek, M. J., Karoum, F., & Chuang, L.-w. (1984). Depression during methadone withdrawal: No role for !b-phenylethylamine: Drug and Alcohol Dependence Vol 13(1) Jan 1984, 21-29.
  • Kitanaka, J., Kitanaka, N., Tatsuta, T., & Takemura, M. (2005). 2-phenylethylamine in combination with l-deprenyl lowers the striatal level of dopamine and prolongs the duration of the stereotypy in mice: Pharmacology, Biochemistry and Behavior Vol 82(3) Nov 2005, 488-494.
  • Kuroki, T., Tsutsumi, T., Hirano, M., Matsumoto, T., & et al. (1990). Behavioral sensitization to beta-phenylethylamine (PEA): Enduring modifications of specific dopaminergic neuron systems in the rat: Psychopharmacology Vol 102(1) Sep 1990, 5-10.
  • Kusaga, A., Yamashita, Y., Koeda, T., Hiratani, M., Kaneko, M., Yamada, S., et al. (2002). Increased urine phenylethylamine after methylphenidate treatment in children with ADHD: Annals of Neurology Vol 52(3) Sep 2002, 371-374.
  • Kutscher, C. L. (1988). Phenylethylamine-induced taste aversion in rats and mice: Pharmacology, Biochemistry and Behavior Vol 29(2) Feb 1988, 287-293.
  • Langhans, W., Harlacher, R., & Scharrer, E. (1989). Verapamil and indomethacin attenuate endotoxin-induced anorexia: Physiology & Behavior Vol 46(3) Sep 1989, 535-539.
  • Lapin, I. P. (1985). Dissimilarities and similarities in interactions of phenibut, baclofen and diazepam with phenylethylamine: Farmakologiya i Toksikologiya Vol 48(4) 1985, 50-54.
  • Lapin, I. P. (1988). Phenylethylamine as an endogenous anxiogenic substance and a common link in anxiety, mania, depression, and schizophrenia: Trudy Leningradskogo Nauchno-Issledovatel'skogo Psikhonevrologicheskogo Instituta im V M Bekhtereva Vol 119 1988, 92-101.
  • Lapin, I. P. (1993). Anxiogenic effect of phenylethylamine and amphetamine in the elevated plus-maze in mice and its attenuation by ethanol: Pharmacology, Biochemistry and Behavior Vol 44(1) Jan 1993, 241-243.
  • Lapin, I. P. (1996). Antagonism by CPP, ()-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, of beta -phenylethylamine (PEA)-induced hypermotility in mice of different strains: Pharmacology, Biochemistry and Behavior Vol 55(2) Oct 1996, 175-178.
  • Lapin, I. P., & Slepokurov, M. V. (1991). Anxiogenic activity of phenylethylamine in mice during social isolation test: Farmakologiya i Toksikologiya Vol 54(6) Nov-Dec 1991, 9-11.
  • Lapin, I. P., & Yuwiler, A. (1997). Modulation of the inhibitory effect of phenylethylamine on spontaneous motor activity in mice by CPP-()-3-(2-Carboxypiperazin-4-YL)-propyl-1-phosphonic acid: Pharmacology, Biochemistry and Behavior Vol 56(2) Feb 1997, 199-204.
  • Lundberg, P.-A., Oreland, L., & Engberg, G. (1985). Inhibition of locus coeruleus neuronal activity by beta-phenylethylamine: Life Sciences Vol 36(19) May 1985, 1889-1896.
  • McGrath, P. J., Cooper, T. B., Quitkin, F. M., & Klein, D. F. (1988). Effects of imipramine and phenelzine on plasma PEA levels: Psychiatry Research Vol 26(2) Nov 1988, 239.
  • McMahon, L. R., & Wellman, P. J. (1996). Effects of systemic phenylpropanolamine and fenfluramine on serotonin activity within rat paraventricular hypothalamus: Physiology & Behavior Vol 59(1) Jan 1996, 63-69.
  • McMahon, L. R., & Wellman, P. J. (1997). Assessment of the role of oxytocin receptors in phenylpropanolamine-induced anorexia in rats: Pharmacology, Biochemistry and Behavior Vol 57(4) Aug 1997, 767-770.
  • McManus, D. J., Mousseau, D. D., Paetsch, P. R., Wishart, T. B., & et al. (1991). !b-Adrenoceptors and antidepressants: Possible 2-phenylethylamine mediation of chronic phenelzine effects: Biological Psychiatry Vol 30(11) Dec 1991, 1122-1130.
  • Mefford, I. N., Lister, R. G., Ota, M., & Linnoila, M. (1990). Antagonism of ethanol intoxication in rats by inhibitors of phenylethanolamine N-methyltransferase: Alcoholism: Clinical and Experimental Research Vol 14(1) Feb 1990, 53-57.
  • Michaelis, R. C., Holloway, F. A., Bird, D. C., & Huerta, P. L. (1987). Interactions between stimulants: Effects on DRL performance and lethality in rats: Pharmacology, Biochemistry and Behavior Vol 27(2) Jun 1987, 299-306.
  • Milgram, N. W., Ivy, G. O., Murphy, M. P., Head, E., & et al. (1995). Effects of chronic oral administration of L-deprenyl in the dog: Pharmacology, Biochemistry and Behavior Vol 51(2-3) Jun-Jul 1995, 421-428.
  • Moises, H. W., Waldmeier, P., & Beckmann, H. (1986). Urinary phenylethylamine correlates positively with hypomania, and negatively with depression, paranoia, and social introversion on the MMPI: European Archives of Psychiatry & Neurological Sciences Vol 236(2) Oct 1986, 83-87.
  • Mosnaim, A. D., Freitag, F. G., Ignacio, R., Salas, M. A., & et al. (1996). Apparent lack of correlation between tyramine and phenylethylamine content and the occurrence of food-precipitated migraine:Reexamination of a variety of food products frequently consumed in the United States and commonly restricted in tyramine-free diets: Headache Quarterly Vol 7(3) 1996, 239-249.
  • Mutovkina, L. G., & Lapin, I. P. (1990). Attenuation of effects of phenylethylamine on social and individual behaviour in mice by ethanol pretreatment: Alcohol and Alcoholism Vol 25(4) 1990, 417-420.
  • Nakagawara, M. (1992). !b-phenylethylamine and noradrenergic function in depression: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 16(1) Jan 1992, 45-53.
  • Nakagawara, M., Shioe, K., Hirano, M., & Sato, Y. (1993). beta -Phenylethylamine, neuropeptide Y, and noradrenergic function in depression. Tokyo, Japan; Philadelphia, PA: Seiwa Shoten; Brunner/Mazel.
  • Nash, J. F., & Maickel, R. P. (1985). Effects of exposure to stressful stimuli on the free-choice consumption of various phenethylamines by rats: Alcohol & Drug Research Vol 6(6) 1985-1986, 403-415.
  • Nichols, D. E. (1986). Studies of the relationship between molecular structure and hallucinogenic activity: Pharmacology, Biochemistry and Behavior Vol 24(2) Feb 1986, 335-340.
  • O'Reilly, R. L., & Davis, B. A. (1994). Phenylethylamine and schizophrenia: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 18(1) Jan 1994, 63-75.
  • O'Reilly, R. L., Davis, B. A., Durden, D. A., Thorpe, L., & et al. (1991). Plasma phenylethylamine in schizophrenic patients: Biological Psychiatry Vol 30(2) Jul 1991, 145-150.
  • Ortmann, R., & et al. (1984). Phenylethylamine-induced stereotypies in the rat: A behavioral test system for assessment of MAO-B inhibitors: Psychopharmacology Vol 84(1) Sep 1984, 22-27.
  • Ozbakis-Dengiz, G., & Banoglu, Z. N. (2001). Effects of melatonin on phenylethamine-induced locomotor activity in rats: Klinik Psikofarmakoloji Bulteni Vol 11(4) 2001, 225-229.
  • Parrish, J. C. (2007). Toward a molecular understanding of hallucinogen action (2-arachidonoyl glycerol). Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Philips, S. R. (1986). In vivo release of endogenous dopamine from rat caudate nucleus by !b-phenylethylamine and !a,!a,-dideutero-!b-phenylethylamine: Life Sciences Vol 39(25) Dec 1986, 2395-2400.
  • Popplewell, D. A., Coffey, P. J., Montgomery, A. M., & Burton, M. J. (1986). A behavioural and pharmacological examination of phenylethylamine-induced anorexia and hyperactivity: Comparisons with amphetamine: Pharmacology, Biochemistry and Behavior Vol 25(4) Oct 1986, 711-716.
  • Rasmussen, K., & Aghajanian, G. K. (1988). Potency of antipsychotics in reversing the effects of a hallucinogenic drug on locus coeruleus neurons correlates with 5-HT-sub-2 binding affinity: Neuropsychopharmacology Vol 1(2) May 1988, 101-107.
  • Regina, M. J., Winter, J. C., & Rabin, R. A. (2003). Characterization of a novel effect of serotonin 5-HT-sub(1A) and 5-HT-sub(2A) receptors: Increasing cGMP levels in rat frontal cortex: Neuropharmacology Vol 45(8) Dec 2003, 1041-1049.
  • Rempel, N. L., Callaway, C. W., & Geyer, M. A. (1993). Serotonin-sub(1B ) receptor activation mimics behavioral effects of presynaptic serotonin release: Neuropsychopharmacology Vol 8(3) May 1993, 201-211.
  • Robert, J. J., Orosco, M., Rouch, C., & Cohen, Y. (1991). Effects of dexfenfluramine and opioid peptides, alone or in combination, on food intake and brain serotonin turnover in rats: Pharmacology, Biochemistry and Behavior Vol 38(4) Apr 1991, 775-780.
  • Rosofsky, M., & Geary, N. (1989). Phenylpropanolamine and amphetamine disrupt postprandial satiety in rats: Pharmacology, Biochemistry and Behavior Vol 34(4) Dec 1989, 797-803.
  • Sabelli, H. (2002). Phenylethylamine deficit and replacement in depressive illness. Philadelphia, PA: Lippincott Williams & Wilkins Publishers.
  • Sabelli, H., Fahrer, R., Medina, R. D., & Fragola, E. O. (1994). Phenylethylamine relieves depression after selective MAO-B inhibition: Journal of Neuropsychiatry & Clinical Neurosciences Vol 6(2) Spr 1994, 203.
  • Sabelli, H. C., & et al. (1986). Clinical studies on the phenylethylamine hypothesis of affective disorder: Urine and blood phenylacetic acid and phenylalanine dietary supplements: Journal of Clinical Psychiatry Vol 47(2) Feb 1986, 66-70.
  • Sabelli, H. C., & Javaid, J. I. (1995). Phenylethylamine modulation of affect: Therapeutic and diagnostic implications: Journal of Neuropsychiatry & Clinical Neurosciences Vol 7(1) Win 1995, 6-14.
  • Sabelli, H. C., Javaid, J. I., Fawcett, J., Kravitz, H. M., & et al. (1990). Urinary phenylacetic acid in panic disorder with and without depression: Acta Psychiatrica Scandinavica Vol 82(1) Jul 1990, 14-16.
  • Sannerud, C. A., Kaminski, B. J., & Griffiths, R. R. (1996). Intravenous self-injection of four novel phenethylamines in baboons: Behavioural Pharmacology Vol 7(4) Aug 1996, 315-323.
  • Satoi, M., Matsuishi, T., Yamada, S., Yamashita, Y., Ohtaki, E., Mori, K., et al. (2000). Decreased cerebrospinal fluid levels of beta -phenylethylamine in patients with Rett syndrome: Annals of Neurology Vol 47(6) Jun 2000, 801-803.
  • Schifano, F., Deluca, P., Agosti, L., Martinotti, G., & Corkery, J. M. (2005). New trends in the cyber and street market of recreational drugs? The case of 2C-T-7 ('Blue Mystic'): Journal of Psychopharmacology Vol 19(6) Nov 2005, 675-679.
  • Scorza, M. C., Reyes-Parada, M., Silveira, R., Viola, H., Medina, J. H., Viana, M. B., et al. (1996). Behavioral effects of the putative anxiolytic (+)-1-(2,5-dimethoxy-4-ethylthiophenyl)-2-aminopropane (ALEPH-2) in rats and mice: Pharmacology, Biochemistry and Behavior Vol 54(2) Jun 1996, 355-361.
  • Semba, J.-i., Nankai, M., Maruyama, Y., Kaneno, S., & et al. (1988). Increase in urinary !b-phenylethylamine preceding the switch from mania to depression: A "rapid cycler." Journal of Nervous and Mental Disease Vol 176(2) Feb 1988, 116-119.
  • Shannon, H. E., & Thompson, W. A. (1984). Behavior maintained under fixed-interval and second-order schedules by intravenous injections of endogenous noncatecholic phenylethylamines in dogs: Journal of Pharmacology and Experimental Therapeutics Vol 228(3) Mar 1984, 691-695.
  • Sharma, R. P., Faull, K., Javaid, J. I., & Davis, J. M. (1995). Cerebrospinal fluid levels of phenylacetic acid in mental illness: Behavioral associations and response to neuroleptic treatment: Acta Psychiatrica Scandinavica Vol 91(5) May 1995, 293-298.
  • Shimazu, S., & Miklya, I. (2004). Pharmacological studies with endogenous enhancer substances: beta -phenylethylamine, tryptamine, and their synthetic derivatives: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 28(3) May 2004, 421-427.
  • Shirkande, S., O'Reilly, R., Davis, B., Durden, D., & et al. (1995). Plasma phenylethylamine levels of schizophrenia patients: The Canadian Journal of Psychiatry / La Revue canadienne de psychiatrie Vol 40(4) May 1995, 221.
  • Smith, T. M. (1985). [-3H]-Flunitrazepam binding in the presence of !b-phenylethylamine and its metabolites: Pharmacology, Biochemistry and Behavior Vol 23(6) Dec 1985, 965-967.
  • Smythies, J. R., & Sykes, E. A. (1966). Structure-activity relationship studies on mescaline: The effect of dimethoxyphenylethylamine and N:N-dimethyl mescaline on the conditioned avoidance response in the rat: Psychopharmacologia 8(5) 1966, 324-330.
  • Snoddy, A. M., Heckathorn, D., & Tessel, R. E. (1985). Cold-restraint stress and urinary endogenous !b-phenylethylamine excretion in rats: Pharmacology, Biochemistry and Behavior Vol 22(3) Mar 1985, 497-500.
  • Stamford, J. A., Kruk, Z. L., & Millar, J. (1986). An in vivo voltammetric comparison of the effects of three psychomotor stimulants on electrically evoked neostriatal dopamine release: Brain Research Vol 366(1-2) Feb 1986, 350-353.
  • Stoff, D. M., & et al. (1984). Behavioral supersensitivity to !b-phenylethylamine after chronic administration of haloperidol: Biological Psychiatry Vol 19(1) Jan 1984, 101-106.
  • Stolaroff, M. J. (1990). Letter to the editor: Journal of Psychoactive Drugs Vol 22(3) Jul-Sep 1990, 379.
  • Suchowersky, O., & DeVries, J. D. (1990). Interaction of fluoxetine and selegiline: The Canadian Journal of Psychiatry / La Revue canadienne de psychiatrie Vol 35(6) Aug 1990, 571-572.
  • Szymanski, H. V., & et al. (1985). Dihydropteridine reductase in schizophrenic patients: Psychiatry Research Vol 15(2) Jun 1985, 115-119.
  • Szymanski, H. V., Naylor, E. W., & Karoum, F. (1987). Plasma phenylethylamine and phenylalanine in chronic schizophrenic patients: Biological Psychiatry Vol 22(2) Feb 1987, 194-198.
  • Taylor, A., Dore, C., & Glover, V. (1996). Urinary phenylethylamine and cortisol levels in the early puerperium: Journal of Affective Disorders 37(2-3) Apr 1996, 137-142.
  • Theofilopoulos, N., Flaskos, J., & George, A. J. (1991). Urinary phenylethylamine excretion in phobic and obsessive patients: Human Psychopharmacology: Clinical and Experimental Vol 6(1) Mar 1991, 43-48.
  • Wellman, P. J. (1990). A review of the physiological bases of the anorexic action of phenylpropanolamine (d,l-norephedrine): Neuroscience & Biobehavioral Reviews Vol 14(3) Fal 1990, 339-355.
  • Wellman, P. J., & Levy, A. (1988). Inhibition of feeding and hoarding behaviors by phenylpropanolamine in the adult rat: Pharmacology, Biochemistry and Behavior Vol 29(1) Jan 1988, 79-81.
  • Wellman, P. J., & Sellers, T. L. (1986). Weight loss induced by chronic phenylpropanolamine: Anorexia and brown adipose tissue thermogenesis: Pharmacology, Biochemistry and Behavior Vol 24(3) Mar 1986, 605-611.
  • Wellman, P. J., Tow, S., & McMahon, L. (1995). Isobolographic assessment of the effects of combinations of phenylpropanolamine and fenfluramine on food intake in rats: Pharmacology, Biochemistry and Behavior Vol 50(2) Feb 1995, 287-291.
  • Wolf, M. E., Mosnaim, A. D., Callaghan, O. H., Chevesich, J., & et al. (1987). Phenylethylamine metabolism to tyramine by postmortem human brain preparations: Life Sciences Vol 40(5) Feb 1987, 489-494.
  • Wong, D. L., Siddall, B., & Wang, W. (1995). Hormonal control of rat adrenal phenylethanolamine N-methyltransferase: Enzyme activity, the final critical pathway: Neuropsychopharmacology Vol 13(3) Nov 1995, 223-234.
  • Wood, D. M., Lal, H., & Emmett-Oglesby, M. W. (1984). Acquisition and recovery of tolerance to the discriminative stimulus properties of cocaine: Neuropharmacology Vol 23(12A) Dec 1984, 1419-1423.
  • Woolverton, W. L. (1986). A review of the effects of repeated administration of selected phenylethylamines: Drug and Alcohol Dependence Vol 17(2-3) Jun 1986, 143-150.
  • Woolverton, W. L., & English, J. A. (1997). Effects of some phenylethylamines in rhesus monkeys trained to discriminate (+)-amphetamine from saline: Drug and Alcohol Dependence Vol 44(2-3) Mar 1997, 79-85.
  • Woolverton, W. L., Johanson, C. E., de la Garza, R., Ellis, S., & et al. (1986). Behavioral and neurochemical evaluation of phenylpropanolamine: Journal of Pharmacology and Experimental Therapeutics Vol 237(3) Jun 1986, 926-930.
  • Wu, S., & Comings, D. E. (1999). Two single nucleotide polymorphisms in the promoter region of the human phenylethanolamine N-methyltransferase PNMT gene: Psychiatric Genetics Vol 9(4) Dec 1999, 187-188.
  • Young, R., Bondarev, M., & Glennon, R. A. (1999). An examination of isometric phenylpropanolamines in (-)ephedrine-trained rats: Drug and Alcohol Dependence Vol 57(1) Nov 1999, 1-6.
  • Zametkin, A. J., & et al. (1984). Phenylethylamine excretion in attention deficit disorder: Journal of the American Academy of Child Psychiatry Vol 23(3) May 1984, 310-314.
  • Zhu, M.-Y. (1995). The modulatory role of 2-phenylethylamine on dopamine transmission and the involvement of dopamine receptors in the regulation of aromatic l-amino acid decarboxylase. Dissertation Abstracts International: Section B: The Sciences and Engineering.


External links


.


This page uses Creative Commons Licensed content from Wikipedia (view authors).