Fandom

Psychology Wiki

Parametric model

34,203pages on
this wiki
Add New Page
Talk0 Share

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory


Definition. A set  \mathcal{P} = \{ P_\theta \mid \theta \in \Theta \} of probability measures  P_\theta on  (\Omega, \mathcal{F}) indexed by a parameter  \theta is said to be a parametric model or parametric family if a only if the parameter space  \Omega is a subset  \mathbf{R}^n .


What this definition says is that distributions belonging to a parametric model can be indexed by a finite dimensional parameter. A given parameter  \theta corresponds to a single distribution  f_{\theta} . If the distributions belonging to a model cannot be indexed by a finite dimensional parameter, then the model is said to be a nonparametric one. A nonparametric model typically consists of a set of unspecified distributions, e.g. continuous distributions.

Models for which the parameter space can be expressed as the Cartesian product of a finite dimensional Euclidean space and an infinite dimensional parameter space are sometimes called semiparametric.


ExamplesEdit

\varphi_{\mu,\sigma^2}(x) = {1 \over \sigma}\cdot{1 \over \sqrt{2\pi}} \exp\left( {-1 \over 2} \left({x - \mu \over \sigma}\right)^2\right)

Thus the family of normal distributions is parametrized by  \theta = (\mu, \sigma^2) . In this case the parameter space  \Omega is given by  \Omega = \{ (\mu, \sigma^2) \mid \mu \in \mathbf{R}, \, \sigma^2 > 0 \} .

This parametrized family is both an exponential family and a location-scale family


  • For each positive real number λ there is a Poisson distribution whose expected value is λ. Its probability mass function is
f(x) = {\lambda^x e^{-\lambda} \over x!}\ \mathrm{for}\ x\in\{\,0,1,2,3,\dots\,\}.

Thus the family of Poisson distributions is parametrized by the positive number  \lambda and the parameter space is given by  \Omega = \{ \lambda \mid \lambda > 0 \} .

The family of Poisson distributions is an exponential family.

This page uses Creative Commons Licensed content from Wikipedia (view authors).

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki