Wikia

Psychology Wiki

Nonparametric statistical tests

Talk0
34,135pages on
this wiki
Revision as of 14:01, December 26, 2011 by Dr Joe Kiff (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory


List of testsEdit

See alsoEdit

ReferencesEdit

  • Aaronson, D., & Watts, B. (1987). Extensions of Grier's computational formulas for A' and B" to below-chance performance: Psychological Bulletin Vol 102(3) Nov 1987, 439-442.
  • Abe, M. (1991). A moving ellipsoid method for nonparametric regression and its application to logit diagnostics with scanner data: Journal of Marketing Research Vol 28(3) Aug 1991, 339-346.
  • Abe, M. (1998). Measuring consumer, nonlinear brand choice response to price: Journal of Retailing Vol 74(4) Fal 1998, 541-568.
  • Agresti, A., & Wackerly, D. (1977). Some exact conditional tests of independence for RxC cross-classification tables: Psychometrika Vol 42(1) Mar 1977, 111-125.
  • Akritas, M. G., Kuha, J., & Osgood, D. W. (2002). A nonparametric approach to matched pairs with missing data: Sociological Methods & Research Vol 30(3) Feb 2002, 425-454.
  • Alder, H. L. (1975). Statistics--Rapid Intuitive Overview: PsycCRITIQUES Vol 20 (3), Mar, 1975.
  • Alterman, A. I., Cacciola, J. S., Habing, B., & Lynch, K. G. (2007). Addiction Severity Index Recent and Lifetime Summary Indexes Based on Nonparametric Item Response Theory Methods: Psychological Assessment Vol 19(1) Mar 2007, 119-132.
  • Altham, P. M. (1973). A non-parametric measure of signal discriminability: British Journal of Mathematical and Statistical Psychology Vol 26(1) May 1973, 1-12.
  • Anderson, J. C., Gerbing, D. W., & Narayanan, A. (1985). A comparison of two alternate residual goodness-of-fit indices: Journal of the Market Research Society Vol 27(4) Oct 1985, 283-291.
  • Angelini, C., De Canditiis, D., & Leblanc, F. (2003). Wavelet regression estimation in nonparametric mixed effect models: Journal of Multivariate Analysis Vol 85(2) May 2003, 267-291.
  • Arndt, S., Turvey, C., Coryell, W. H., Dawson, J. D., Leon, A. C., & Akiskal, H. S. (2000). Charting patients' course: A comparison of statistics used to summarize patient course in longitudinal and repeated measures studies: Journal of Psychiatric Research Vol 34(2) Mar-Apr 2000, 105-113.
  • Arnold, A. M. (1993). Nonparametric approaches to the reliability of psychometric tests in Alzheimer's disease: Dissertation Abstracts International.
  • Artem'Eva, E. Y., Meshalkin, L. D., Morozova, I. V., Sorokina, E. G., & Khomskaya, E. D. (1964). An attempt to utilize non-parametric statistical methods to describe eye movement curves: Voprosy Psychologii No 5 1964, 122-126.
  • Austin, E. (2005). Review of Handbook of parametric and nonparametric statistical procedures: British Journal of Mathematical and Statistical Psychology Vol 58(2) Nov 2005, 382.
  • Baba, Y. (1986). Graphical analysis of rank data: Behaviormetrika No 19 Jan 1986, 1-15.
  • Bai, Z., Chen, Z., & Wu, Y. (2003). Convergence rate of the best-r-point-average estimator for the maximizer of a nonparametric regression function: Journal of Multivariate Analysis Vol 84(2) Feb 2003, 319-334.
  • Bakeman, R., McArthur, D., & Quera, V. (1996). Detecting group differences in sequential association using sampled permutations: Log odds, kappa, and phi compared: Behavior Research Methods, Instruments & Computers Vol 28(3) Aug 1996, 446-457.
  • Bakirov, N. K., Rizzo, M. L., & Szekely, G. J. (2006). A multivariate nonparametric test of independence: Journal of Multivariate Analysis Vol 97(8) Sep 2006, 1742-1756.
  • Baringhaus, L., & Franz, C. (2004). On a new multivariate two-sample test: Journal of Multivariate Analysis Vol 88(1) Jan 2004, 190-206.
  • Barth, A.-R., & Lienert, G. A. (1987). The Chi-square Margants Test as validity criterion for factor analyses: Psychologische Beitrage Vol 29(1) 1987, 31-41.
  • Baumler, G., & Lienert, G. A. (1993). Re-evaluation of the Yerkes-Dodson law by nonparametric tests of trend: Studia Psychologica Vol 35(4-5) 1993, 431-436.
  • Beasley, T. M. (2000). Nonparametric tests for analyzing interactions among intra-block ranks in multiple group repeated measures designs: Journal of Educational and Behavioral Statistics Vol 25(1) Spr 2000, 20-59.
  • Bennett, B. M. (1964). A non-parametric test for randomness in a sequence of multinomial trials: Biometrics 20(1) 1964, 182-190.
  • Beran, R., Bilodeau, M., & Lafaye de Micheaux, P. (2007). Nonparametric tests of independence between random vectors: Journal of Multivariate Analysis Vol 98(9) Oct 2007, 1805-1824.
  • Berkhof, J., & Snijders, T. A. B. (2001). Variance component testing in multilevel models: Journal of Educational and Behavioral Statistics Vol 26(2) Sum 2001, 133-152.
  • Berry, K. J., Johnston, J. E., & Mielke, P. W., Jr. (2007). An alternative measure of effect size for Cochran's Q test for related proportions: Perceptual and Motor Skills Vol 104(3, Pt2) Jun 2007, 1236-1242.
  • Berry, K. J., & Mielke, P. W. (1976). Large sample confidence limits for Goodman and Kruskal's proportional prediction measure TAU-sub(b): Educational and Psychological Measurement Vol 36(3) Fal 1976, 747-751.
  • Berry, K. J., & Mielke, P. W. (1983). A rapid FORTRAN subroutine for the Fisher exact probability test: Educational and Psychological Measurement Vol 43(1) Spr 1983, 167-171.
  • Berry, K. J., & Mielke, P. W. (1985). Subroutines for computing exact chi-square and Fisher's exact probability tests: Educational and Psychological Measurement Vol 45(1) Spr 1985, 153-159.
  • Berry, K. J., & Mielke, P. W. (1996). Nonasymptotic probability values for Cochran's Q statistic: A FORTRAN 77 program: Perceptual and Motor Skills Vol 82(1) Feb 1996, 303-306.
  • Bilker, W. B., Brensinger, C., & Gur, R. C. (2004). A Two Factor ANOVA-like Test for Correlated Correlations: CORANOVA: Multivariate Behavioral Research Vol 39(4) Oct 2004, 565-594.
  • Bintig, A. (1980). The efficiency of various estimations of reliability of rating scales: Educational and Psychological Measurement Vol 40(3) Fal 1980, 619-643.
  • Blair, R. C. (1982). An examination of some commonly held attitudes regarding the nature and usefulness of nonparametric tests: Florida Journal of Educational Research Vol 24 1982, 29-38.
  • Blair, R. C., Sawilowsky, S. S., and Higgins, J. J. (1987). Limitations of the rank transform in factorial ANOVA. Communications in Statistics: Computations and Simulations, B16, 1133-1145.
  • Bockenholt, U., & Langeheine, R. (1996). Latent change in recurrent choice data: Psychometrika Vol 61(2) Jun 1996, 285-301.
  • Boersma, F. J., DeJonge, J. J., & Stellwagen, W. R. (1964). A Power Comparison of the F and L Tests--I: Psychological Review Vol 71(6) Nov 1964, 505-513.
  • Bogetoft, P., & Nielsen, K. (2005). Internet Based Benchmarking: Group Decision and Negotiation Vol 14(3) May 2005, 195-215.
  • Bolt, D. M. (2002). A Monte Carlo comparison of parametric and nonparametric polytomous DIF detection methods: Applied Measurement in Education Vol 15(2) Apr 2002, 113-141.
  • Bolt, D. M., & Gierl, M. J. (2006). Testing Features of Graphical DIF: Application of a Regression Correction to Three Nonparametric Statistical Tests: Journal of Educational Measurement Vol 43(4) Win 2006, 313-333.
  • Boneau, C. A. (1962). A comparison of the power of the U and t tests: Psychological Review Vol 69(3) May 1962, 246-256.
  • Bonett, D. G., & Bentler, P. M. (1983). Goodness-of-fit procedures for the evaluation and selection of log-linear models: Psychological Bulletin Vol 93(1) Jan 1983, 149-166.
  • Boomsma, A. (2003). Introduction to nonpammetric item response modeling: Psychometrika Vol 68(2) Jun 2003, 323-326.
  • Borys, S. V., & Corrigan, J. G. (1980). A BASIC program for nonparametric post hoc comparisons: Behavior Research Methods & Instrumentation Vol 12(6) Dec 1980, 635.
  • Bradley, J. V. (1978). Robustness? : British Journal of Mathematical and Statistical Psychology Vol 31(2) Nov 1978, 144-152.
  • Bradley, J. V. (1979). A nonparametric test for interactions of any order: Journal of Quality Technology Vol 11(4) Oct 1979, 177-184.
  • Bredenkamp, J. (1974). The nonparametric examination of interactions: Psychologische Beitrage Vol 16(3) 1974, 398-416.
  • Bremner, F. J., Yost, M., & Nasman, V. T. (1989). Statistical analysis of fuzzy-set data from neuronal networks: Behavior Research Methods, Instruments & Computers Vol 21(2) Apr 1989, 209-212.
  • Brennan, J. (1978). Computer program to compute salient variable similarity index and congruence coefficients for matching factor matrices: Educational and Psychological Measurement Vol 38(1) Spr 1978, 183-185.
  • Bridge, P. K., & Sawilowsky, S. (1999) Increasing physician’s awareness of the impact of statistical tests on research outcomes: Investigating the comparative power of the Wilcoxon Rank-Sum test and independent samples t-test to violations from normality. Journal of Clinical Epidemiology, 52, 229-236.
  • Briley, T. S. (1972). Non-parametric analogs of biserial and point-biserial correlation in the item analysis of normative and criterion-referenced tests: Dissertation Abstracts International Vol.
  • Brooks, G. P. (2003). Using Monte Carlo methods to teach statistics: The MC2G computer program: Understanding Statistics Vol 2(2) Apr 2003, 137-150.
  • Brown, R. L. (1985). RANCOVA: A Minitab macro for the calculation of nonparametric (ranked) analysis of covariance: Behavior Research Methods, Instruments & Computers Vol 17(5) Oct 1985, 573-575.
  • Brown, S., & Heathcote, A. (2002). On the use of nonparametric regression in assessing parametric regression models: Journal of Mathematical Psychology Vol 46(6) Dec 2002, 716-730.
  • Brusco, M. J. (2002). Identifying a reordering of rows and columns for multiple proximity matrices using multiobjective programming: Journal of Mathematical Psychology Vol 46(6) Dec 2002, 731-745.
  • Buck, J. L., & Finner, S. L. (1985). A still further note on Freeman's measure of association: Psychometrika Vol 50(3) Sep 1985, 365-366.
  • Buckalew, L. W. (1983). Nonparametrics and psychology: A revitalized alliance: Perceptual and Motor Skills Vol 57(2) Oct 1983, 447-450.
  • Bunea, F., & McKeague, I. W. (2005). Covariate selection for semiparametric hazard function regression models: Journal of Multivariate Analysis Vol 92(1) Jan 2005, 186-204.
  • Bunner, J., & Sawilowsky, S. (2002). Alternatives to Sw in the confidence interval of the trimmed mean. Journal of Modern Applied Statistical Methods, 1(1), 182-187.
  • Burnett, T. D., & Barr, D. R. (1977). A nonparametric analogy of analysis of covariance: Educational and Psychological Measurement Vol 37(2) Sum 1977, 341-348.
  • Cai, T. T. (2008). On information pooling, adaptability and superefficiency in nonparametric function estimation: Journal of Multivariate Analysis Vol 99(3) Mar 2008, 421-436.
  • Caldeira, J. D. (1980). Parametric assumptions to some nonparametric measures of sensory efficiency: Human Factors Vol 22(1) Feb 1980, 119-120.
  • Camilli, G., & Hopkins, K. D. (1979). Testing for association in 2x2 contingency tables with very small sample sizes: Psychological Bulletin Vol 86(5) Sep 1979, 1011-1014.
  • Cardot, H. (2002). Spatially Adaptive Splines for Statistical Linear Inverse Problems: Journal of Multivariate Analysis Vol 81(1) Apr 2002, 100-119.
  • Cattin, P. (1979). Comment on a Monte Carlo investigation of scaling as an alternative to regression: Organizational Behavior & Human Performance Vol 23(1) Feb 1979, 113-116.
  • Chakraborti, S., & Gibbons, J. D. (1992). One-sided nonparametric comparison of treatments with a standard for unequal sample sizes: Journal of Experimental Education Vol 60(3) Spr 1992, 235-242.
  • Chang, H. (1994). The analysis of directional data: Performance comparisons of randomization and parametric methods. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Chapman, D. W., Blackburn, R. T., Austin, A. E., & Hutcheson, S. M. (1983). Expanding analytic possibilities of Rokeach Values data: Educational and Psychological Measurement Vol 43(2) Sum 1983, 419-421.
  • Chechile, R. A. (2004). Review of Nonparametric Statistical Methods for Complete and Censored Data: Journal of Mathematical Psychology Vol 48(6) Dec 2004, 436.
  • Chen, R. S., & Dunlap, W. P. (1993). SAS procedures for approximate randomization tests: Behavior Research Methods, Instruments & Computers Vol 25(3) Aug 1993, 406-409.
  • Chen, T.-Y. (2002). A Monte Carlo study of three new nonparametric tests for equivalence. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Cheng, M.-Y., & Hall, P. (2006). Methods for tracking support boundaries with corners: Journal of Multivariate Analysis Vol 97(8) Sep 2006, 1870-1893.
  • Chicken, E., & Cai, T. T. (2005). Block thresholding for density estimation: Local and global adaptivity: Journal of Multivariate Analysis Vol 95(1) Jul 2005, 76-106.
  • Child, I. L. (1946). A note on Grant's "New Statistical Criteria for Learning and Problem Solution." Psychological Bulletin Vol 43(6) Nov 1946, 558-561.
  • Church, J. D., & Wike, E. L. (1979). A Monte Carlo study of nonparametric multiple-comparison tests for a two-way layout: Bulletin of the Psychonomic Society Vol 14(2) Aug 1979, 95-98.
  • Church, J. D., & Wike, E. L. (1980). Two Monte Carlo studies of Silverstein's nonparametric multiple comparison tests: Psychological Reports Vol 46(2) Apr 1980, 403-407.
  • Church, J. D., & Wike, E. L. (1981). Silverstein's nonparametric many-one test for a two-way design: A Monte Carlo study: Psychological Reports Vol 49(3) Dec 1981, 931-934.
  • Cicchetti, D. V. (2002). A Comprehensive View of the Biostatistical Landscape: PsycCRITIQUES Vol 47 (4), Aug, 2002.
  • Ciechalski, J. C. (1988). A BASIC program for computing the Kruskal-Wallis H: Educational and Psychological Measurement Vol 48(3) Fal 1988, 707-709.
  • Cliff, N. (1996). Answering ordinal questions with ordinal data using ordinal statistics: Multivariate Behavioral Research Vol 31(3) 1996, 331-350.
  • Cochran, D. J., & Gibson, J. D. (1977). A simple nonparametric test for correlation: Human Factors Vol 19(3) Jun 1977, 273-278.
  • Cooper, M. (1975). A non-parametric test for increasing trend: Educational and Psychological Measurement Vol 35(2) Sum 1975, 303-306.
  • Cotton, J. (1978). Review of Understandable statistics: Concepts and methods: PsycCRITIQUES Vol 23 (6), Jun, 1978.
  • Cousineau, D., Brown, S., & Heathcote, A. (2004). Fitting distributions using maximum likelihood: Methods and packages: Behavior Research Methods, Instruments & Computers Vol 36(4) Nov 2004, 742-756.
  • Craig, A. (1979). Nonparametric measures of sensory efficiency for sustained monitoring tasks: Human Factors Vol 21(1) Feb 1979, 69-77.
  • Cziko, G. A. (1984). An improvement over Guttman scalogram analysis: A computer program for evaluating cumulative, nonparametric scales of dichotomous items: Educational and Psychological Measurement Vol 44(1) Spr 1984, 159-163.
  • Daouia, A., & Simar, L. (2005). Robust nonparametric estimators of monotone boundaries: Journal of Multivariate Analysis Vol 96(2) Oct 2005, 311-331.
  • Darom, E., & Rimon, J. p. (1979). Computer analysis of split-plot designs with unequal N: Educational and Psychological Measurement Vol 39(1) Spr 1979, 231-234.
  • Davies, R. B., & Pickles, A. R. (1983). A moments approach for omitted variables in residential histories and other panel data: Journal of Mathematical Sociology Vol 9(3) 1983, 227-241.
  • Davis, J. A., & Schooler, S. R. (1974). Nonparametric path analysis: The multivariate structure of dichotomous data when using the odds ratio or Yule's Q: Social Science Research Vol 3(4) Dec 1974, 267-297.
  • Davison, T. C., & Jagacinski, R. J. (1977). Nonparametric analysis of signal detection confidence ratings: Behavior Research Methods & Instrumentation Vol 9(6) Dec 1977, 545-546.
  • Dawson, D. V., & Siegler, I. C. (1996). Approaches to the nonparametric analysis of limited longitudinal data sets: Experimental Aging Research Vol 22(1) Jan-Mar 1996, 33-57.
  • de Gruijter, D. N. M. (1994). Comparison of the nonparametric Mokken Model and parametric IRT models using latent class analysis: Applied Psychological Measurement Vol 18(1) Mar 1994, 27-34.
  • de Koning, E., Sijtsma, K., & Hamers, J. H. M. (2002). Comparison of four IRT models when analyzing two tests for inductive reasoning: Applied Psychological Measurement Vol 26(3) Sep 2002, 302-320.
  • Degerman, R. (1982). Coefficients of correlation and concordance for sets of triads judgments: Educational and Psychological Measurement Vol 42(3) Fal 1982, 807-814.
  • Deni, R. (1977). BASIC-PLUS programs for Sackett's lag sequential analysis: Behavior Research Methods & Instrumentation Vol 9(4) Aug 1977, 383-384.
  • Dette, H., & Derbort, S. (2001). Analysis of Variance in Nonparametric Regression Models: Journal of Multivariate Analysis Vol 76(1) Jan 2001, 110-137.
  • Domhof, S., & Brunner, E. (2002). Discussion on "A nonparametric approach to matched pairs with missing data." Sociological Methods & Research Vol 30(3) Feb 2002, 455-457.
  • Domhof, S., Brunner, E., & Osgood, D. W. (2002). Rank procedures for repeated measures with missing values: Sociological Methods & Research Vol 30(3) Feb 2002, 367-393.
  • Donaldson, W. (1992). Measuring recognition memory: Journal of Experimental Psychology: General Vol 121(3) Sep 1992, 275-277.
  • Douglas, J. A., Stout, W., & DiBello, L. V. (1996). A kernel-smoothed version of SIBTEST with applications to local DIF inference and function estimation: Journal of Educational and Behavioral Statistics Vol 21(4) Win 1996, 333-363.
  • Drasgow, F., Levine, M. V., Williams, B., McLaughlin, M. E., & et al. (1989). Modeling incorrect responses to multiple-choice items with multilinear formula score theory: Applied Psychological Measurement Vol 13(3) Sep 1989, 285-299.
  • Dzhouzha, N. F. (1987). Use of non-parametric statistics in psycho-pedagogical studies: Voprosy Psychologii Vol 4 Jul-Aug 1987, 145-150.
  • Eckes, T. (1982). A nonparametric test for the similarity between object set partitions: Psychologische Beitrage Vol 24(1) 1982, 75-84.
  • Edgington, E. S. (1965). The assumption of homogeneity of variance for the T test and nonparametric tests: Journal of Psychology: Interdisciplinary and Applied 59(1) 1965, 177-179.
  • Edgington, E. S. (1980). Overcoming obstacles to single-subject experimentation: Journal of Educational Statistics Vol 5(3) Fal 1980, 261-267.
  • Edgington, E. S. (1980). Validity of randomization tests for one-subject experiments: Journal of Educational Statistics Vol 5(3) Fal 1980, 235-251.
  • Edgington, E. S. (1982). Nonparametric tests for single-subject multiple schedule experiments: Behavioral Assessment Vol 4(1) Win 1982, 83-91.
  • Edgington, E. S. (1983). The role of permutation groups in randomization tests: Journal of Educational Statistics Vol 8(2) Sum 1983, 121-135.
  • Edgington, E. S. (1992). Nonparametric tests for single-case experiments. Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.
  • Edgington, E. S., Harrod, W. J., Haller, O., Hong, O. P., & et al. (1988). A nonparametric test for reward distribution strategies in the minimal group paradigm: European Journal of Social Psychology Vol 18(6) Dec 1988, 527-529.
  • Edgington, E. S., & Strain, A. R. (1973). Randomization tests: Computer time requirements: Journal of Psychology: Interdisciplinary and Applied Vol 85(1) Sep 1973, 89-95.
  • Efron, B. (1988). Bootstrap confidence intervals: Good or bad? : Psychological Bulletin Vol 104(2) Sep 1988, 293-296.
  • Ehlers, W., & Lienert, G. A. (1976). Area specification in Conover's correlation-trend test: Psychologische Beitrage Vol 18(1) 1976, 54-61.
  • Emery, D. R. (1979). Comparing methods: What is unfair? : Organizational Behavior & Human Performance Vol 23(1) Feb 1979, 117-119.
  • Engelhardt, W. (1979). Non-parametric testing of interaction: Statistical power analysis: Psychologische Beitrage Vol 21(3-4) 1979, 439-449.
  • Etevenon, P., Tortrat, D., & Benkelfat, C. (1985). Electroencephalographic cartography: II. By means of statistical group studies--activation by visual attention: Neuropsychobiology Vol 13(3) Aug 1985, 141-146.
  • Eye, A. v. (1988). Some multivariate developments in nonparametric statistics. New York, NY: Plenum Press.
  • Facer, M. R., & Muller, H.-G. (2003). Nonparametric estimation of the location of a maximum in a response surface: Journal of Multivariate Analysis Vol 87(1) Oct 2003, 191-217.
  • Fernandez, J. R., Mojon, A., & Hermida, R. C. (2004). Comparison of parameters from rhythmometric models with multiple components on hybrid data: Chronobiology International Vol 21(3) 2004, 469-484.
  • Finch, H. (2005). Comparison of the Performance of Nonparametric and Parametric MANOVA Test Statistics when Assumptions Are Violated: Methodology: European Journal of Research Methods for the Behavioral and Social Sciences Vol 1(1) 2005, 27-38.
  • Fisk, A. D., Schneider, W., & Burkhard, J. C. (1982). SENSE: A program for calculating parametric (d') and nonparametric (A' and Ag) indexes of sensitivity: Behavior Research Methods & Instrumentation Vol 14(3) Jun 1982, 361.
  • Fleming, J. S. (1985). An index of fit for factor scales: Educational and Psychological Measurement Vol 45(4) Win 1985, 725-728.
  • Follmann, D. (1988). Consistent estimation in the Rasch model based on nonparametric margins: Psychometrika Vol 53(4) Dec 1988, 553-562.
  • Folsom, R. E. (1985). Probability sample U-statistics: Theory and applications for complex sample designs: Dissertation Abstracts International.
  • Formann, A. K. (1983). Goodness of fit test for the Rasch model through subgroup formation using latent class analysis: Zeitschrift fur Experimentelle und Angewandte Psychologie Vol 30(1) 1983, 45-66.
  • Gaither, N., & Glorfeld, L. (1985). An evaluation of the use of tests of significance in organizational behavior research: Academy of Management Review Vol 10(4) Oct 1985, 787-793.
  • Galan, L., Biscay, R., Rodriguez, J. L., Perez-Abalo, M. C., & et al. (1997). Testing topographic differences between event related brain potentials by using non-parametric combinations of permutation tests: Electroencephalography & Clinical Neurophysiology Vol 102(3) Mar 1997, 240-247.
  • Galla, J. P. (1987). Kendall's tau and Kendall's partial correlation: Two BASIC programs for microcomputers: Behavior Research Methods, Instruments & Computers Vol 19(1) Feb 1987, 55-56.
  • Gammel, G., & Moosbrugger, H. (1982). Nonparametric unconditional randomization-test for one- and two-factorial designs with small sample sizes: Psychologische Beitrage Vol 24(2) 1982, 253-276.
  • Gao, J., Tong, H., & Wolff, R. (2002). Model specification tests in nonparametric stochastic regression models: Journal of Multivariate Analysis Vol 83(2) Nov 2002, 324-359.
  • Garre, F. G., Vermunt, J. K., & Croon, M. A. (2002). Likelihood-ratio tests for order-restricted log-linear models: A comparison of asymptotic and bootstrap methods: Metodologia de las Ciencias del Comportamiento Vol 4(2) 2002, 325-337.
  • Gebert, A. (1977). Testing of interaction effects in 2-2 block designs by simultaneous W-tests: Psychologische Beitrage Vol 19(1) 1977, 121-129.
  • Gebert, A., & Lienert, G. A. (1971). Concordance of "yes no" judgments: Psychologische Beitrage Vol 13(4) 1971, 600-608.
  • Ghoudi, K., Kulperger, R. J., & Remillard, B. (2001). A Nonparametric Test of Serial Independence for Time Series and Residuals: Journal of Multivariate Analysis Vol 79(2) Nov 2001, 191-218.
  • Gibbons, J. D. (1993). Nonparametric measures of association. Thousand Oaks, CA: Sage Publications, Inc.
  • Gilbert, L. H. (1979). PSYCHOSTATS: BASIC programs for data analysis in psychology: Behavior Research Methods & Instrumentation Vol 11(4) Aug 1979, 464.
  • Gliner, G., Goldman, S. R., & Hubert, L. J. (1983). A methodological study on the evaluation of learning from story narratives: Multivariate Behavioral Research Vol 18(1) Jan 1983, 9-36.
  • Gocka, E. F. (1973). Alternate tests for comparing independent groups: Psychological Reports Vol 32(3, Pt 1) Jun 1973, 683-692.
  • Gocka, E. F. (1973). Comments on randomization tests: Psychological Reports Vol 32(1) Feb 1973, 293-294.
  • Grace, H. A. (1954). Facilitating legislative research: Journal of Applied Psychology Vol 38(4) Aug 1954, 268-271.
  • Greenblatt, R. E., & Pflieger, M. E. (2004). Randomization-Based Hypothesis Testing from Event-Related Data: Brain Topography Vol 16(4) Sum 2004, 225-232.
  • Gregoire, T. G., & Driver, B. L. (1987). Analysis of ordinal data to detect population differences: Psychological Bulletin Vol 101(1) Jan 1987, 159-165.
  • Guiard, V., & Rasch, D. (2004). The robustness of two sample tests for means--A reply on von Eye's comment: Psychology Science Vol 46(4) 2004, 549-554.
  • Gupta, S. P. (1988). Nonparametric two way ANOVA by ranks: Indian Journal of Psychometry & Education Vol 19(2) Jul 1988, 57-64.
  • Haase, R. F., & Juster, H. R. (1986). Computing reproduced correlations in structural equation models: Educational and Psychological Measurement Vol 46(1) Spr 1986, 157-161.
  • Hager, W., Lubbeke, B., & Hubner, R. (1983). Violation of assumptions in 2-sample location tests: A review of empirical results: Zeitschrift fur Experimentelle und Angewandte Psychologie Vol 30(3) 1983, 347-386.
  • Hall, P., Nussbaum, M., & Stern, S. E. (1997). On the Estimation of a Support Curve of Indeterminate Sharpness: Journal of Multivariate Analysis Vol 62(2) Aug 1997, 204-232.
  • Hallin, M., Lu, Z., & Tran, L. T. (2004). Kernel density estimation for spatial processes: The L-sub(1) theory: Journal of Multivariate Analysis Vol 88(1) Jan 2004, 61-75.
  • Hamerle, A. (1979). Treatment comparisons of categorical data and independent samples: Psychologische Beitrage Vol 21(1) 1979, 112-124.
  • Hamerle, A., & Kemeny, P. (1979). Simultaneous group comparisons in unlimited random designs and dichotomous survey data: Zeitschrift fur Sozialpsychologie Vol 10(3) 1979, 220-225.
  • Hammond, S. (2003). Review of Introduction to nonparametric item response theory: British Journal of Mathematical and Statistical Psychology Vol 56(2) Nov 2003, 385-386.
  • Hannan, T. E. (1986). CBASIC programs for nonparametric statistical analysis: Behavior Research Methods, Instruments & Computers Vol 18(4) Aug 1986, 403-404.
  • Hansen, N., Kershaw, T., Kochman, A., & Sikkema, K. (2007). A classification and regression trees analysis predicting treatment outcome following a group intervention randomized controlled trial for HIV-positive adult survivors of childhood sexual abuse: Psychotherapy Research Vol 17(4) 2007, 404-415.
  • Haruvy, E. (2002). Identification and testing of modes in beliefs: Journal of Mathematical Psychology Vol 46(1) Feb 2002, 88-109.
  • Harwell, M. R. (1990). A general approach to hypothesis testing for nonparametric tests: Journal of Experimental Education Vol 58(2) Win 1990, 143-156.
  • Harwell, M. R. (1991). Completely randomized factorial analysis of variance using ranks: British Journal of Mathematical and Statistical Psychology Vol 44(2) Nov 1991, 383-401.
  • Harwell, M. R., & Serlin, R. C. (1988). An empirical study of a proposed test of nonparametric analysis of covariance: Psychological Bulletin Vol 104(2) Sep 1988, 268-281.
  • Harwell, M. R., & Serlin, R. C. (1989). A nonparametric test statistic for the general linear model: Journal of Educational Statistics Vol 14(4) Win 1989, 351-371.
  • Headrick, T. C. & Sawilowsky, S. (1999). Simulating correlated nonnormal distributions: Extending the Fleishman power method. Psychometrika, 64, 25-36.
  • Hedges, L. V., & Olkin, I. (1984). Nonparametric estimators of effect size in meta-analysis: Psychological Bulletin Vol 96(3) Nov 1984, 573-580.
  • Helmers, R., Mangku, I. W., & Zitikis, R. (2003). Consistent estimation of the intensity function of a cyclic Poisson process: Journal of Multivariate Analysis Vol 84(1) Jan 2003, 19-39.
  • Hettmansperger, T. P. (1975). Non-parametric inference for ordered alternatives in a randomized block design: Psychometrika Vol 40(1) Mar 1975, 53-62.
  • Hettmansperger, T. P., & McKean, J. W. (1978). Statistical inference based on ranks: Psychometrika Vol 43(1) Mar 1978, 69-79.
  • Hoijtink, H., & Molenaar, I. W. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks: Psychometrika Vol 62(2) Jun 1997, 171-189.
  • Holzmann, H., Bissantz, N., & Munk, A. (2007). Density testing in a contaminated sample: Journal of Multivariate Analysis Vol 98(1) Jan 2007, 57-75.
  • Horrell, J. F., & Lessig, V. P. (1974). A note on a nonparametric test of independence between two vectors: Journal of Marketing Research Vol 11(1) Feb 1974, 106-108.
  • Hsieh, C.-H. (1994). A Monte Carlo comparison of standard deviation estimators among jackknife and bootstrap methods. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Hubert, L. J. (1978). A general formula for the variance of Cohen's weighted kappa: Psychological Bulletin Vol 85(1) Jan 1978, 183-184.
  • Hubert, L. J. (1979). Generalized concordance: Psychometrika Vol 44(2) Jun 1979, 135-142.
  • Hubert, L. J. (1984). Statistical applications of linear assignment: Psychometrika Vol 49(4) Dec 1984, 449-473.
  • Hubert, L. J. (1985). Combinatorial data analysis: Association and partial association: Psychometrika Vol 50(4) Dec 1985, 449-467.
  • Hubert, L. J., & Baker, F. B. (1978). Analyzing the multitrait-multimethod matrix: Multivariate Behavioral Research Vol 13(2) Apr 1978, 163-179.
  • Hubert, L. J., & Baker, F. B. (1978). Evaluating the conformity of sociometric measurements: Psychometrika Vol 43(1) Mar 1978, 31-41.
  • Hubner, R., & Hager, W. (1984). Are nonparametric tests preferable to parametric tests for random distribution? Empirical studies of flow diagrams, decision aids, and recommendations: Zeitschrift fur Experimentelle und Angewandte Psychologie Vol 31(2) 1984, 214-231.
  • Hunter, M. A., & May, R. B. (1993). Some myths concerning parametric and nonparametric tests: Canadian Psychology/Psychologie Canadienne Vol 34(4) Oct 1993, 384-389.
  • Hunter, M. A., & May, R. B. (2003). Statistical testing and null distributions: What to do when samples are not random: Canadian Journal of Experimental Psychology/Revue canadienne de psychologie experimentale Vol 57(3) Sep 2003, 176-188.
  • Hutchinson, T. P. (2002). Should we routinely test for simultaneous location and scale changes? : Ergonomics Vol 45(3) Feb 2002, 248-251.
  • Ichikawa, M., & Konishi, S. (2001). Efficient bootstrap tests for the goodness of fit in covariance structure analysis: Behaviormetrika Vol 28(2) Jul 2001, 103-110.
  • Ivliyev, Y. A. (1987). On the method of mathematical modelling of subjective relations: A letter to the editorial board of Psychologicheski Zhurnal: Psikologicheskii Zhurnal Vol 8(5) Sep-Oct 1987, 137-141.
  • Janosky, J. E., Al-Shboul, Q. M., & Pellitieri, T. R. (1995). Validation of the use of a nonparametric smoother for the examination of data from a single-subject design: Behavior Modification Vol 19(3) Jul 1995, 307-324.
  • Jansen, P. G., Roskam, E. E., & Van den Wollenberg, A. L. (1984). Discussion on the usefulness of the MOKKEN procedure for nonparametric scaling: Psychologische Beitrage Vol 26(4) 1984, 722-735.
  • Jenkins, S. J., Fuqua, D. R., & Froehle, T. C. (1984). A critical examination of use of non-parametric statistics in the Journal of Counseling Psychology: Perceptual and Motor Skills Vol 59(1) Aug 1984, 31-35.
  • Jenkins, S. J., Fuqua, D. R., & Hartman, B. W. (1984). Evaluating criteria for selection of nonparametric statistics: Perceptual and Motor Skills Vol 58(3) Jun 1984, 979-984.
  • Jih, C.-s. (1986). Basic nonparametric statistics for experimental studies: Dissertation Abstracts International.
  • Jimenez Jimenez, C., & Perez Rosa, J. (1989). Experimental designs in behaviour sciences: A method of free distribution variance analysis (non-parametric): Anuario de Psicologia Vol 3(42) 1989, 31-47.
  • Joe, L. T. (1978). Bayesian nonparametric policies in Markov decision models: Dissertation Abstracts International.
  • Johnson, M. S. (2006). Nonparametric estimation of item and respondent locations from unfolding-type items: Psychometrika Vol 71(2) Jun 2006, 257-279.
  • Johnson, N. S. (1976). A note on the use of A' as a measure of sensitivity: Journal of Experimental Child Psychology Vol 22(3) Dec 1976, 530-531.
  • Jones, E. E., & Windholz, M. (1990). The psychoanalytic case study: Toward a method for systematic inquiry: Journal of the American Psychoanalytic Association Vol 38(4) 1990, 985-1015.
  • Junker, B. W., & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models: Applied Psychological Measurement Vol 24(1) Mar 2000, 65-81.
  • Karabatsos, G. (2006). Bayesian nonparametric model selection and model testing: Journal of Mathematical Psychology Vol 50(2) Apr 2006, 123-148.
  • Karabatsos, G., & Sheu, C.-F. (2004). Order-constrained Bayes inference for dichotomous models of unidimensional nonparametric IRT: Applied Psychological Measurement Vol 28(2) Mar 2004, 110-125.
  • Katz, B. M. (1975). A multivariate approach to testing for homogeneity of correlated proportions: Dissertation Abstracts International.
  • Katz, B. M., Marascuilo, L. A., & McSweeney, M. (1985). Nonparametric alternatives for testing main effects hypotheses: A model for combining data across independent studies: Psychological Bulletin Vol 98(1) Jul 1985, 200-208.
  • Katz, B. M., & McSweeney, M. (1980). A multivariate Kruskal-Wallis test with post hoc procedures: Multivariate Behavioral Research Vol 15(3) Jul 1980, 281-297.
  • Katz, B. M., & McSweeney, M. (1983). Some non-parametric tests for analysing ranked data in multi-group repeated measures designs: British Journal of Mathematical and Statistical Psychology Vol 36(1) May 1983, 145-156.
  • Kazdin, A. E. (1980). Obstacles in using randomization tests in single-case experimentation: Journal of Educational Statistics Vol 5(3) Fal 1980, 253-260.
  • Kelley, D. L., & Sawilowsky, S. (1997). Nonparametric alternatives to the F statistic in analysis of variance. Journal of Statistical Computation and Simulation, 58, 343-359.
  • Keppel, G. (1980). Review of Introduction to statistics: A nonparametric approach for the social sciences: PsycCRITIQUES Vol 25 (1), Jan, 1980.
  • Keselman, H. J., & Rogan, J. C. (1977). An evaluation of some non-parametric and parametric tests for multiple comparisons: British Journal of Mathematical and Statistical Psychology Vol 30(1) May 1977, 125-133.
  • Keselman, H. J., Rogan, J. C., & Fier-Walsh, B. J. (1977). An evaluation of some non-parametric and parametric tests for location equality: British Journal of Mathematical and Statistical Psychology Vol 30(2) Nov 1977, 213-221.
  • Keselman, H. J., & Toothaker, L. E. (1973). An empirical comparison of the Marascuilo and Normal Scores nonparametric tests and the Scheffe and Tukey Parametric Tests for Pairwise Comparisons: Proceedings of the Annual Convention of the American Psychological Association 1973, 15-16.
  • Kingma, J., & Reuvekamp, J. (1986). Mokken scale: A Pascal program for nonparametric stochastic scaling: Educational and Psychological Measurement Vol 46(3) Fal 1986, 667-677.
  • Kingma, J., & Reuvekamp, J. (1986). Mokken test for the robustness of nonparametric stochastic Mokken scales: Educational and Psychological Measurement Vol 46(3) Fal 1986, 679-685.
  • Kingma, J., & Taerum, T. (1988). A FORTRAN 77 program for a nonparametric item response model: The Mokken scale analysis: Behavior Research Methods, Instruments & Computers Vol 20(5) Oct 1988, 471-480.
  • Kingma, J., & TenVergert, E. M. (1985). A nonparametric scale analysis of the development of conservation: Applied Psychological Measurement Vol 9(4) Dec 1985, 375-387.
  • Kirkpatrick, J. S. (1981). Nonparametric statistics: Useful tools for counselors: Personnel & Guidance Journal Vol 59(10) Jun 1981, 627-630.
  • Kline, R. B. (2004). Nonparametric Effect Size Indexes. Washington, DC: American Psychological Association.
  • Kohn, M., & Lifshitz, K. (1976). A nonparametric statistical evaluation of changes in evoked potentials to different stimuli: Psychophysiology Vol 13(5) Sep 1976, 392-398.
  • Kraemer, H. C. (1984). Nonparametric effect size estimation: A reply: Psychological Bulletin Vol 96(3) Nov 1984, 569-572.
  • Kraemer, H. C., & Andrews, G. (1982). A nonparametric technique for meta-analysis effect size calculation: Psychological Bulletin Vol 91(2) Mar 1982, 404-412.
  • Kramer, A., Kahan, G., Cooper, D., & Papavasiliou, A. (1974). A non-parametric ranking method for the statistical evaluation of sensory data: Chemical Senses & Flavor Vol 1(1) Jan 1974, 121-133.
  • Krauth, J. (1980). Possible misinterpretations when evaluating psychological time series: Archiv fur Psychologie Vol 133(2) 1980, 139-147.
  • Krauth, J. (1982). Distribution-free tests of homogeneity for dependent samples: Psychologische Beitrage Vol 24(4) 1982, 601-619.
  • Krauth, J. (1983). Nonparametric effect size estimation: A comment on Kraemer and Andrews: Psychological Bulletin Vol 94(1) Jul 1983, 190-192.
  • Krauth, J. (2005). Paradoxes in multidimensional contingency tables: What does this mean for CFA? : Psychology Science Vol 47(3-4) 2005, 304-314.
  • Krauth, J., & Lienert, G. A. (1978). Nonparametric two-sample comparison of learning curves based on orthogonal polynomials: Psychological Research Vol 40(2) 1978, 159-171.
  • Krauth, J., & Lienert, G. A. (1981). Multivariate nonparametric techniques in psychological research: Psychologische Beitrage Vol 23(2) 1981, 226-241.
  • Krauth, J., & Lienert, G. A. (1982). Fundamentals and modifications of configural frequency analysis (CFA): Studia Psychologica Vol 24(3-4) 1982, 283-292.
  • Krieger, A. M., & Green, P. E. (1993). Generalized measures of association for ranked data with an application to prediction accuracy: Journal of Classification Vol 10(1) 1993, 93-114.
  • Kruger, H.-P. (1977). Simultaneous U-tests for the exact examination of main and interaction-effects of 2-2 factorial experimental designs: Psychologische Beitrage Vol 19(1) 1977, 110-120.
  • Kruger, H.-P. (1979). Indications for the application of nonparametric prediction procedures: A discussion of Schulze (1978): "A procedure for multivariate analysis of the terms of rank-ordered variables: Hierarchical analysis of rank-ordered variables." Zeitschrift fur Sozialpsychologie Vol 10(1) 1979, 94-104.
  • Kruger, H.-P., & Buchta, H. (1980). A non-parametric comparison of test profiles and trend curves in independent samples: Psychologische Beitrage Vol 22(4) 1980, 581-591.
  • Kumar, B. (1973). A weighted sign test of significance for the ordinal and the ordered-metric levels of measurement: Dissertation Abstracts International.
  • Land, K. C., Nagin, D. S., & McCall, P. L. (2001). Discrete-time hazard regression models with hidden heterogeneity: The semiparametric mixed Poisson regression approach: Sociological Methods & Research Vol 29(3) Feb 2001, 342-373.
  • Langhorne, J. E., Loney, J., & Hacker, M. (1978). A transformation program for normalizing data: Behavior Research Methods & Instrumentation Vol 10(5) Oct 1978, 745.
  • Lathrop, R. G., & Williams, J. E. (1989). The shape of the Inverse Scree test for cluster analysis: Educational and Psychological Measurement Vol 49(4) Win 1989, 827-834.
  • Lautsch, E., & von Eye, A. (1998). Zur Verwendung der Konfigurations-Clusteranalyse bei der Analyse von Anderungen in Me-sup-5wertprofilen: Zeitschrift fur Differentielle und Diagnostische Psychologie Vol 19(3) 1998, 200-203.
  • Leach, C. (1991). Nonparametric methods for complex data sets. Oxford, England; Florence, KY: British Psychological Society; Taylor & Frances/Routledge.
  • Lee, C.-H. (2007). A Monte Carlo study of two nonparametric statistics with comparisons of type I error rates and power. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Lee, Y.-S. (2007). A Comparison of Methods for Nonparametric Estimation of Item Characteristic Curves for Binary Items: Applied Psychological Measurement Vol 31(2) Mar 2007, 121-134.
  • Lehmann, E. L., & D'Abrera, H. J. (1975). Nonparametrics: Statistical methods based on ranks. Oxford, England: Holden-Day.
  • Lei, P.-W., Dunbar, S. B., & Kolen, M. J. (2004). A Comparison of Parametric and Nonparametric Approaches to Item Analysis for Multiple-Choice Tests: Educational and Psychological Measurement Vol 64(4) Aug 2004, 565-587.
  • Levin, J. R., & Wampold, B. E. (1999). Generalized single-case randomization tests: Flexible analyses for a variety of situations: School Psychology Quarterly Vol 14(1) Spr 1999, 59-93.
  • Levin, J. R., & Wampold, B. E. (1999). "Generalized single-case randomization tests: Flexible analyses for a variety of situations": Erratum: School Psychology Quarterly Vol 14(4) Win 1999, 447.
  • Levine, D. M. (1978). A Monte Carlo study of Kruskal's variance based measure on stress: Psychometrika Vol 43(3) Sep 1978, 307-315.
  • Levy, K. J. (1979). Nonparametric large-sample pairwise comparisons: Psychological Bulletin Vol 86(2) Mar 1979, 371-375.
  • Lewis, D., & Burke, C. J. (1950). Further discussion of the use and misuse of the chi-square test: Psychological Bulletin Vol 47(4) Jul 1950, 347-355.
  • Lezak, M. D., & Gray, D. K. (1984). Sampling problems and nonparametric solutions in clinical neuropsychological research: Journal of Clinical Neuropsychology Vol 6(1) Feb 1984, 101-109.
  • Li, T., & Vuong, Q. (1998). Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators: Journal of Multivariate Analysis Vol 65(2) May 1998, 139-165.
  • Lienert, G. A. (1980). On testing the significance of stanine-correlations: Psychologische Beitrage Vol 22(3) 1980, 449-453.
  • Lienert, G. A. (1984). Comments on Krauth, J: Distribution-free tests of homogeneity in paired samples: Psychologische Beitrage Vol 26(2) 1984, 309-317.
  • Lienert, G. A., & Krauth, J. (1973). The configuration frequency analysis: VI. Profile and symptom changes: Zeitschrift fur Klinische Psychologie und Psychotherapie Vol 21(2) 1973, 100-109.
  • Lienert, G. A., & Krauth, J. (1974). Configural frequency analysis: Zeitschrift fur Klinische Psychologie und Psychotherapie Vol 22(1) 1974, 3-17.
  • Lienert, G. A., & Krauth, J. (1974). Configuration frequency analysis: Zeitschrift fur Klinische Psychologie und Psychotherapie Vol 22(2) Jan 1974, 108-121.
  • Lienert, G. A., & Raatz, U. (1981). Item homogeneity defined by multivariate symmetry: Applied Psychological Measurement Vol 5(2) Spr 1981, 263-269.
  • Lienert, G. A., & zur Oeveste, H. (1987). Comparing sets of learning curves via two-sample configural frequency analysis: Psychologische Beitrage Vol 29(1) 1987, 12-30.
  • Lindman, H. R. (1972). Nonparametric statistics, Bayesian and classical: I. Sign test and Mann-Whitney U test. Oxford, England: Indiana U , No 72-6.
  • Liu, R. (1982). A statistical note on attrition studies: College Student Journal Vol 16(2) Sum 1982, 193-197.
  • Liu, X. (2007). A Bayesian nonparametric approach to testing essential unidimensionality in item response theory. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Lodhi, P. H. (1982). Kendall's zeta, Mosteller's chi square & Luce's choice axiom in relation to paired comparison method: Indian Psychological Review Vol 22(3) 1982, 1-8.
  • Lu, X., & Burke, M. D. (2005). Censored multiple regression by the method of average derivatives: Journal of Multivariate Analysis Vol 95(1) Jul 2005, 182-205.
  • Lunneborg, C. E. (1985). Estimating the correlation coefficient: The bootstrap approach: Psychological Bulletin Vol 98(1) Jul 1985, 209-215.
  • Lunneborg, C. E. (1986). Confidence intervals for a quantile contrast: Application of the bootstrap: Journal of Applied Psychology Vol 71(3) Aug 1986, 451-456.
  • Lunneborg, C. E., & Tousignant, J. P. (1985). Efron's bootstrap with application to the repeated measures design: Multivariate Behavioral Research Vol 20(2) Apr 1985, 161-178.
  • Lytton, J. M. (1975). A decision flow chart for nonparametric statistics: Dissertation Abstracts International.
  • MacDonald, P. (1999). Power, Type I, and Type III error rates of parametric and nonparametric statistical tests: Journal of Experimental Education Vol 67(4) Sum 1999, 367-379.
  • MacKay, G., Somerville, W., & Lundie, J. (1996). Reflections on goal attainment scaling (GAS): Cautionary notes and proposals for development: Educational Research Vol 38(2) Sum 1996, 161-172.
  • Macmillan, N. A., & Creelman, C. D. (1996). Triangles in ROC space: History and theory of "nonparametric" measures of sensitivity and response bias: Psychonomic Bulletin & Review Vol 3(2) Jun 1996, 164-170.
  • Mailhot, L. (1985). Some statistical aspects of right truncated distributions: Mathematiques et Sciences Humaines Vol 23(90) Sum 1985, 45-80.
  • Marascuilo, L. A. (1980). Introductory Nonparametric Statistics: PsycCRITIQUES Vol 25 (8), Aug, 1980.
  • Marascuilo, L. A., & Dagenais, F. (1982). Planned and post hoc comparisons for tests of homogeneity where the dependent variable is categorical and ordered: Educational and Psychological Measurement Vol 42(3) Fal 1982, 777-781.
  • Marascuilo, L. A., & McSweeney, M. (1967). Nonparametric Post Hoc Comparisons for Trend: Psychological Bulletin Vol 67(6) Jun 1967, 401-412.
  • Marascuilo, L. A., & Serlin, R. (1977). Interactions for dichotomous variables in repeated measures designs: Psychological Bulletin Vol 84(5) Sep 1977, 1002-1007.
  • Maris, G., & Maris, E. (2003). Testing the race model inequality: A nonparametric approach: Journal of Mathematical Psychology Vol 47(5-6) Oct-Dec 2003, 507-514.
  • Markowitsch, H. J., & Pritzel, M. (1977). Nonparametric statistics for the analysis of behavior-related single unit data: Physiology & Behavior Vol 18(4) Apr 1977, 717-719.
  • Marx, T. J. (1975). Statistical measurement of agreement for data in the nominal scale with applications to educational research and decisions: Dissertation Abstracts International.
  • Mathew, T., & Nordstrom, K. (1997). Wishart and Chi-Square Distributions Associated with Matrix Quadratic Forms: Journal of Multivariate Analysis Vol 61(1) Apr 1997, 129-143.
  • Maydeu-Olivares, A. (2005). Further Empirical Results on Parametric Versus Non-Parametric IRT Modeling of Likert-Type Personality Data: Multivariate Behavioral Research Vol 40(2) Apr 2005, 261-279.
  • McCall, R. B., & Appelbaum, M. I. (1973). Bias in the analysis of repeated-measures designs: Some alternative approaches: Child Development Vol 44(3) Sep 1973, 401-415.
  • McLeod, J. T. (1998). Nonparametric regression as a general statistical modeling methodology: A Monte Carlo investigation of factors influencing statistical power and robust performance in the presence of moderator variables. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • McSweeney, M., & Katz, B. M. (1978). Nonparametric statistics: Use and nonuse: Perceptual and Motor Skills Vol 46(3, Pt 2) Jun 1978, 1023-1032.
  • Meddis, R. (1980). Unified analysis of variance by ranks: British Journal of Mathematical and Statistical Psychology Vol 33(1) May 1980, 84-98.
  • Meijer, R. R. (1996). The influence of the presence of deviant item score patterns on the power of a person-fit statistic: Applied Psychological Measurement Vol 20(2) Jun 1996, 141-154.
  • Meijer, R. R., & Sijtsma, K. (1995). Detection of aberrant item score patterns: A review of recent developments: Applied Measurement in Education Vol 8(3) 1995, 261-272.
  • Meyer, J. P., Huynh, H., & Seaman, M. A. (2004). Exact Small-Sample Differential Item Functioning Methods for Polytomous Items With Illustration Based on an Attitude Survey: Journal of Educational Measurement Vol 41(4) Win 2004, 331-344.
  • Mielke, P. M., & Berry, K. J. (1983). Asymptotic clarifications, generalizations, and concerns regarding an extended class of matched pairs tests based on powers of ranks: Psychometrika Vol 48(3) Sep 1983, 483-485.
  • Mielke, P. W., & Berry, K. J. (1996). An exact solution to an occupancy problem: A useful alternative to Cochran's Q test: Perceptual and Motor Skills Vol 82(1) Feb 1996, 91-95.
  • Millsap, R. E., & Meredith, W. (1994). Statistical evidence in salary discrimination studies: Nonparametric inferential conditions: Multivariate Behavioral Research Vol 29(4) 1994, 339-364.
  • Mojirsheibani, M., & Montazeri, Z. (2007). On nonparametric classification with missing covariates: Journal of Multivariate Analysis Vol 98(5) May 2007, 1051-1071.
  • Mokken, R. J., & Lewis, C. (1982). A nonparameteric approach to the analysis of dichotomous item responses: Applied Psychological Measurement Vol 6(4) Fal 1982, 417-430.
  • Mokken, R. J., Lewis, C., & Sijtsma, K. (1986). Rejoinder to "The Mokken scale: A critical discussion." Applied Psychological Measurement Vol 10(3) Sep 1986, 279-285.
  • Moorer, P., & Suurmeijer, T. P. B. M. (1993). Unidimensionality and cumulativeness of the Loneliness Scale using Mokken Scale Analysis for polychotomous items: Psychological Reports Vol 73(3, Pt 2) Dec 1993, 1324-1326.
  • Moral, I., & M. Rodriguez Poo, J. (2002). Introduction to nonparametric regression estimation methods: Metodologia de las Ciencias del Comportamiento Vol 4(2) 2002, 223-253.
  • Morley, S., & Adams, M. (1989). Some simple statistical tests for exploring single-case time-series data: British Journal of Clinical Psychology Vol 28(1) Feb 1989, 1-18.
  • Mottonen, J., Husler, J., & Oja, H. (2003). Multivariate nonparametric tests in a randomized complete block design: Journal of Multivariate Analysis Vol 85(1) Apr 2003, 106-129.
  • Mroch, A. A., & Bolt, D. M. (2006). A Simulation Comparison of Parametric and Nonparametric Dimensionality Detection Procedures: Applied Measurement in Education Vol 19(1) 2006, 67-91.
  • Murray, J. F., Hughes, G. F., & Kreutz-Delgado, K. (2006). Machine learning methods for predicting failures in hard drives: A multiple-instance application: Journal of Machine Learning Research Vol 6 Dec 2006, 783-816.
  • Myers, J. L., DiCecco, J. V., White, J. B., & Borden, V. M. (1982). Repeated measurements of dichotomous variables: Q and F tests: Psychological Bulletin Vol 92(2) Sep 1982, 517-525.
  • Nandakumar, R. (1993). Assessing essential unidimensionality of real data: Applied Psychological Measurement Vol 17(1) Mar 1993, 29-38.
  • Nandakumar, R., & Stout, W. F. (1993). Refinements of Stout's procedure for assessing latent trait unidimensionality: Journal of Educational Statistics Vol 18(1) Spr 1993, 41-68.
  • Nandakumar, R., Yu, F., Li, H.-H., & Stout, W. (1998). Assessing unidimensionality of polytomous data: Applied Psychological Measurement Vol 22(2) Jun 1998, 99-115.
  • Nelson, P. L., & Toothaker, L. E. (1975). An empirical study of Jonckheere's non-parametric test of ordered alternatives: British Journal of Mathematical and Statistical Psychology Vol 28(2) Nov 1975, 167-176.
  • Neuhauser, M. (2002). Two-sample tests when variances are unequal: Animal Behaviour Vol 63(4) Apr 2002, 823-825.
  • Nevel'Skii, P. B. (1964). The application of non-parametric tests of significance: Voprosy Psychologii No 6 1964, 51-55.
  • No authorship, i. (1983). Review of Statistical Tables for the Social, Biological and Physical Sciences: PsycCRITIQUES Vol 28 (1), Jan, 1983.
  • Noether, G. E. (1985). Elementary estimates: An introduction to nonparametrics: Journal of Educational Statistics Vol 10(3) Fal 1985, 211-221.
  • Nygren, T. E. (1985). An examination of conditional violations of axioms for additive conjoint measurement: Applied Psychological Measurement Vol 9(3) Sep 1985, 249-264.
  • O'Brien, R. G. (1978). Robust techniques for testing heterogeneity of variance effects in factorial designs: Psychometrika Vol 43(3) Sep 1978, 327-342.
  • Okumura, H., & Naito, K. (2006). Non-parametric kernel regression for multinomial data: Journal of Multivariate Analysis Vol 97(9) Oct 2006, 2009-2022.
  • Oliver, L. M. (2004). Comprehensive Statistical Reference in a Single Volume? : PsycCRITIQUES Vol 49 (Suppl 9), 2004.
  • Padmanabhan, A. R. (1977). A comparison of the efficiencies of the c-sample normal scores and the Kruskal-Wallis tests in the case of grouped data: British Journal of Mathematical and Statistical Psychology Vol 30(2) Nov 1977, 222-226.
  • Palmer, A., Losilla, J. M., Vives, J., & Jimenez, R. (2007). Overdispersion in the Poisson regression model: A comparative simulation study: Methodology: European Journal of Research Methods for the Behavioral and Social Sciences Vol 3(3) 2007, 89-99.
  • Panning, W. H. (1982). Fitting blockmodels to data: Social Networks Vol 4(1) Mar 1982, 81-101.
  • Park, T.-H. (1997). A class of nonparametric tests for the generalized Behrens-Fisher problem. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Pascale, P. J. (1993). Page: A PASCAL program for the nonparametric test for ordered alternatives: Educational and Psychological Measurement Vol 53(1) Spr 1993, 99-101.
  • Pascale, P. J. (1993). Program Page: Using SPSS-X to generate the L statistic for the Page test of ordered alternatives: Educational and Psychological Measurement Vol 53(1) Spr 1993, 95-97.
  • Penfield, D. A. (1978). The two-sample normal scores test for scale: Educational and Psychological Measurement Vol 38(3) Fal 1978, 657-663.
  • Penfield, D. A. (1994). Choosing a two-sample location test: Journal of Experimental Education Vol 62(4) Sum 1994, 343-360.
  • Penfield, D. A., & Koffler, S. L. (1978). A comparison of some K-sample nonparametric tests for scale: Journal of Experimental Education Vol 47(2) Win 1978-1979, 126-130.
  • Penfield, D. A., & Koffler, S. L. (1986). A nonparametric K-sample test for equality of slopes: Educational and Psychological Measurement Vol 46(3) Fal 1986, 537-542.
  • Penfield, D. A., & Sachdeva, D. (1976). The absolute normal scores test for symmetry: Journal of Experimental Education Vol 45(2) Win 1976, 22-26.
  • Pensky, M. (1999). Nonparametric Empirical Bayes Estimation of the Matrix Parameter of the Wishart Distribution: Journal of Multivariate Analysis Vol 69(2) May 1999, 242-260.
  • Pesarin, F. (1990). On a nonparametric combination method for dependent permutation tests with applications: Psychotherapy and Psychosomatics Vol 54(2-3) 1990, 172-179.
  • Petersen, M. A. (2005). Review of Introduction to Nonparametric Item Response Theory: Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care & Rehabilitation Vol 14(4) May 2005, 1201-1202.
  • Pohl, N. F., & Bruno, A. V. (1976). TGDA: Nonparametric discriminant analysis: Educational and Psychological Measurement Vol 36(3) Fal 1976, 737-740.
  • Polonik, W., & Wang, Z. (2005). Estimation of regression contour clusters-an application of the excess mass approach to regression: Journal of Multivariate Analysis Vol 94(2) Jun 2005, 227-249.
  • Ponocny, I. (2001). Nonparametric goodness-of-fit tests for the Rasch model: Psychometrika Vol 66(3) Sep 2001, 437-459.
  • Ponsoda, V. (1981). Some programs for statistics and for visual attention: Revista de Psicologia General y Aplicada Vol 36(5) 1981, 819-823.
  • Posch, M. A. (1997). Comparative properties of nonparametric statistics for the analysis of the 2 x c layout for ordinal categorical data. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Post, W. J., & Snijders, T. A. B. (1993). Nonparametric unfolding models for dichotomous data: Methodika Vol 7(1) 1993, 130-156.
  • Rae, G. (1985). Quade's nonparametric analysis of covariance of matching: Behavior Research Methods, Instruments & Computers Vol 17(3) Jun 1985, 421-422.
  • Ramsay, J. O. (1995). A similarity-based smoothing approach to nondimensional item analysis: Psychometrika Vol 60(3) Sep 1995, 323-339.
  • Ramsay, J. O., Heckman, N., & Silverman, B. W. (1997). Spline smoothing with model-based penalties: Behavior Research Methods, Instruments & Computers Vol 29(1) Feb 1997, 99-106.
  • Ramsey, P. H. (1982). Empirical power of procedures for comparing two groups on p variables: Journal of Educational Statistics Vol 7(2) Sum 1982, 139-156.
  • Rasch, D., & Guiard, V. (2004). The robustness of parametric statistical methods: Psychology Science Vol 46(2) 2004, 175-208.
  • Raslear, T. G., Shurtleff, D., & Simmons, L. (1992). Loudness bisection and masking in the rat (Rattus norvegicus): Journal of Comparative Psychology Vol 106(4) Dec 1992, 374-382.
  • Rasmussen, J. L. (1986). An evaluation of parametric and non-parametric tests on modified and non-modified data: British Journal of Mathematical and Statistical Psychology Vol 39(2) Nov 1986, 213-220.
  • Rasmussen, J. L. (1987). Parametric and bootstrap approaches to repeated measures designs: Behavior Research Methods, Instruments & Computers Vol 19(4) Aug 1987, 357-360.
  • Rasmussen, J. L. (1988). "Bootstrap confidence intervals: Good or bad": Comments on Efron (1988) and Strube (1988) and further evaluation: Psychological Bulletin Vol 104(2) Sep 1988, 297-299.
  • Rasmussen, J. L. (1989). Parametric and non-parametric analysis of groups by trials design under variance-covariance inhomogeneity: British Journal of Mathematical and Statistical Psychology Vol 42(1) May 1989, 91-102.
  • Rasmussen, J. L., Heumann, K. A., Heumann, M. T., & Botzum, M. (1989). Univariate and multivariate groups by trials analysis under violation of variance-covariance and normality assumptions: Multivariate Behavioral Research Vol 24(1) Jan 1989, 93-105.
  • Regal, R. R., & Larntz, K. (1978). Likelihood methods for testing group problem solving models with censored data: Psychometrika Vol 43(3) Sep 1978, 353-366.
  • Rivas, T., Bersabe, R., & Berrocal, C. (2005). Application of the Double Monotonicity Model to Polytomous Items: Scalability of the Beck Depression Items on Subjects with Eating Disorders: European Journal of Psychological Assessment Vol 21(1) 2005, 1-10.
  • Roberge, J. J., & Roberge, J. (1977). A generalized nonparametric ANOVA program (Version 2): Behavior Research Methods & Instrumentation Vol 9(1) Feb 1977, 28.
  • Rodriguez-Campos, M. C. (1999). On Confidence Intervals in Nonparametric Binary Regression via Edgeworth Expansions: Journal of Multivariate Analysis Vol 69(2) May 1999, 218-241.
  • Rojo, J., & Ghebremichael, M. (2006). Estimation of two ordered bivariate mean residual life functions: Journal of Multivariate Analysis Vol 97(2) Feb 2006, 431-454.
  • Roskam, E. E., Van den Wollenberg, A. L., & Jansen, P. G. (1986). The Mokken scale: A critical discussion: Applied Psychological Measurement Vol 10(3) Sep 1986, 265-277.
  • Rossi, N., Wang, X., & Ramsay, J. O. (2002). Nonparametric item response function estimates with the EM algorithm: Journal of Educational and Behavioral Statistics Vol 27(3) Fal 2002, 291-317.
  • Rothstein, S. M., Bell, W. D., Patrick, J. A., & Miller, H. (1981). A jackknife test of homogeneity of variance with paired replicates data: Psychometrika Vol 46(1) Mar 1981, 35-40.
  • Rouanet, H., & Lepine, D. (1974). The conflict between robustness and power of a test for differences between independent means: Mathe1matiques et Sciences Humaines No 47 1974, 61-71.
  • Royeen, C. B. (1986). An exploration of parametric versus nonparametric statistics in occupational therapy clinical research: Dissertation Abstracts International.
  • Royeen, C. B., & Seaver, W. L. (1986). Promise in nonparametrics: American Journal of Occupational Therapy Vol 40(3) Mar 1986, 191-193.
  • Rust, R. T., & Bornman, E. O. (1982). Distribution-free methods of approximating nonlinear marketing relationships: Journal of Marketing Research Vol 19(3) Aug 1982, 372-374.
  • Sachs, J., Law, Y. k., & Chan, C. K. K. (2003). A nonparametric item analysis of a selected item subset of the Learning Process Questionnaire: British Journal of Educational Psychology Vol 73(3) Sep 2003, 395-423.
  • Samejima, F. (1994). Nonparametric estimation of the plausibility functions of the distractors of vocabulary test items: Applied Psychological Measurement Vol 18(1) Mar 1994, 35-51.
  • Samejima, F. (1998). Efficient nonparametric approaches for estimating the operating characteristics of discrete item responses: Psychometrika Vol 63(2) Jun 1998, 111-130.
  • Sawilowsky, S. S. (1990). Nonparametric tests of interaction in experimental design. Review of Educational Research, 60, 91-126.
  • Sawilowsky, S. S. (1993). Comments on using alternatives to normal theory statistics in social and behavioural science: Canadian Psychology/Psychologie Canadienne Vol 34(4) Oct 1993, 432-439.
  • Sawilowksy, S. S. (1998). Comments on using robust statistics in social and behavioral science. British Journal of Mathematical and Statistical Psychology, 51, 49-52.
  • Sawilowsky, S. (2000) Review of the rank transform in designed experiments. Perceptual and Motor Skills, 90, 489-497.
  • Sawilowsky, S. (2002). A quick distribution-free test for trend that contributes evidence of construct validity. Measurement and Evaluation in Counseling and Development, 35, 78-88.
  • Sawilowsky, S. (2005). Misconceptions leading to choosing the t test over the Wilcoxon Mann-Whitney U test for shift in location parameter. Journal of Modern Applied Statistical Methods, 4(2), 598-600.
  • Sawilowsky, S., Blair, R. C., and Higgins, J. J. (1989). An investigation of the type I error and power properties of the rank transform procedure in factorial ANOVA. Journal of Educational Statistics, 14, 255-267.
  • Sawilowsky, S. S., & Brown, M. T. (1991). On using the t test on ranks as an alternative to the Wilcoxon Test: Perceptual and Motor Skills Vol 72(3, Pt 1) Jun 1991, 860-862.
  • Schaal, S., Atkeson, C. G., & Vijayakumar, S. (2002). Scalable techniques from nonparametric statistics for real time robot learning: Applied Intelligence Vol 17(1) Jul-Aug 2002, 49-60.
  • Scheiblechner, H. (2003). Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP): Psychometrika Vol 68(1) Mar 2003, 79-96.
  • Schmid, F., & Schmidt, R. (2007). Multivariate conditional versions of Spearman's rho and related measures of tail dependence: Journal of Multivariate Analysis Vol 98(6) Jul 2007, 1123-1140.
  • Schulman, R. S. (1976). Correlation and prediction in ordinal test theory: Psychometrika Vol 41(3) Sep 1976, 329-340.
  • Schultz, J. V., & Hubert, L. (1976). A nonparametric test for the correspondence between two proximity matrices: Journal of Educational Statistics Vol 1(1) Spr 1976, 59-67.
  • Seaman, S. L., Algina, J., & Olejnik, S. F. (1985). Type I error probabilities and power of the rank and parametric ANCOVA procedures: Journal of Educational Statistics Vol 10(4) Win 1985, 345-367.
  • Seaman, S. L., & Young, D. M. (1990). A non-parametric variable selection algorithm for allocatory linear discriminant analysis: Educational and Psychological Measurement Vol 50(4) Win 1990, 837-841.
  • Seidenstucker, E. (1977). Therapy, therapist, and client as tested using the Latin square: Zeitschrift fur Klinische Psychologie und Psychotherapie Vol 25(3) 1977, 196-202.
  • Seraphine, A. E., Algina, J. J., & Miller, M. D. (2001). The assessment of unidimensionality of normal and lognormal data: A look at two nonparametric procedures: Journal of Applied Measurement Vol 2(1) 2001, 27-47.
  • Serfling, R. (2002). Generalized quantile processes based on multivariate depth functions, with applications in nonparametric multivariate analysis: Journal of Multivariate Analysis Vol 83(1) Oct 2002, 232-247.
  • Serlin, R. C. (1976). A computer program for the analysis of categorical data: Educational and Psychological Measurement Vol 36(3) Fal 1976, 743-746.
  • Serlin, R. C., Carr, J., & Marascuilo, L. A. (1982). A measure of association for selected nonparametric procedures: Psychological Bulletin Vol 92(3) Nov 1982, 786-790.
  • Serlin, R. C., & Harwell, M. R. (2004). More Powerful Tests of Predictor Subsets in Regression Analysis Under Nonnormality: Psychological Methods Vol 9(4) Dec 2004, 492-509.
  • Severance, N. (1998). A unique place of its own: PsycCRITIQUES Vol 43 (12), Dec, 1998.
  • Shaffer, J. P. (1977). Reorganization of variables in analysis of variance and multidimensional contingency tables: Psychological Bulletin Vol 84(2) Mar 1977, 220-228.
  • Sheskin, D. J. (2004). Handbook of parametric and nonparametric statistical procedures (3rd ed.). Boca Raton, FL: Chapman & Hall/CRC.
  • Sheu, C.-F., & O'Curry, S. (1996). Implementation of nonparametric multivariate statistics with S: Behavior Research Methods, Instruments & Computers Vol 28(2) May 1996, 315-318.
  • Shulkin, B., & Sawilowsky, S. (2009). Estimating a population median with a small sample. Model Assisted Statistics and Applications, 4(2), 143-155.
  • Siegel, S., & Castellan, N. J., Jr. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New York, NY, England: Mcgraw-Hill Book Company.
  • Sijtsma, K. (1984). Useful nonparametric scaling: A reply to Jansen: Psychologische Beitrage Vol 26(3) 1984, 423-437.
  • Sijtsma, K. (2001). Developments in measurement of persons and items by means of item response models: Behaviormetrika Vol 28(1) Jan 2001, 65-94.
  • Sijtsma, K., & Hemker, B. T. (1998). Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models: Psychometrika Vol 63(2) Jun 1998, 183-200.
  • Sijtsma, K., & Junker, B. W. (1996). A survey of theory and methods of invariant item ordering: British Journal of Mathematical and Statistical Psychology Vol 49(1) May 1996, 79-105.
  • Sijtsma, K., & Junker, B. W. (2006). Item Response Theory: Past Performance, Present Developments, and Future Expectations: Behaviormetrika Vol 33(1) Jan 2006, 75-102.
  • Sijtsma, K., & Meijer, R. R. (1992). A method for investigating the intersection of item response functions in Mokken's nonparametric IRT model: Applied Psychological Measurement Vol 16(2) Jun 1992, 149-157.
  • Silverstein, A. B. (1974). Relations between analysis of variance and its nonparametric analogs: Psychological Reports Vol 34(1) Feb 1974, 331-333.
  • Silverstein, A. B. (1975). Comparing all treatment means with the grand mean: II. The case of ranked data: Perceptual and Motor Skills Vol 40(1) Feb 1975, 221-222.
  • Silverstein, A. B. (1978). Critical values for nonparametric multiple comparisons: Psychological Reports Vol 43(1) Aug 1978, 44-46.
  • Singer, B. (1979). Distribution-free methods for non-parametric problems: A classified and selected bibliography: British Journal of Mathematical and Statistical Psychology Vol 32(1) May 1979, 1-60.
  • Singh, S. N., & Karney, D. F. (1987). A simple algorithm to obtain nonparametric response bias estimates using Hodos's method: Behavior Research Methods, Instruments & Computers Vol 19(5) Oct 1987, 460-461.
  • Smith, E. C., Daniel, W. W., & Schott, B. (1978). Nonparametric regression analysis: A program package for use on a computer terminal: Behavior Research Methods & Instrumentation Vol 10(3) Jun 1978, 435-436.
  • Sorbom, D. (1978). An alternative to the methodology for analysis of covariance: Psychometrika Vol 43(3) Sep 1978, 381-396.
  • Sprott, D. A. (1978). Robustness and non-parametric procedures are not the only or the safe alternatives to normality: Canadian Journal of Psychology/Revue Canadienne de Psychologie Vol 32(3) Sep 1978, 180-185.
  • Stamm, C. L., & Safrit, M. J. (1977). Comparison of two nonparametric methods for estimating the reliability of motor performance tests: Research Quarterly Vol 48(1) Mar 1977, 169-176.
  • Stavig, G. R., & Acock, A. C. (1980). Coefficients of association analogous to Pearson's r for nonparametric statistics: Educational and Psychological Measurement Vol 40(3) Fal 1980, 679-685.
  • Stemmler, M., & Bingham, C. R. (2003). Log-linear modeling and two-sample CFA in the search of discrimination types: Psychology Science Vol 45(2) 2003, 421-429.
  • Stout, W. (1987). A nonparametric approach for assessing latent trait unidimensionality: Psychometrika Vol 52(4) Dec 1987, 589-617.
  • Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment: Applied Psychological Measurement Vol 20(4) Dec 1996, 331-354.
  • Strube, M. J. (1988). Bootstrap Type I error rates for the correlation coefficient: An examination of alternate procedures: Psychological Bulletin Vol 104(2) Sep 1988, 290-292.
  • Swanson, D. B., Clauser, B. E., Case, S. M., Nungester, R. J., & Featherman, C. (2002). Analysis of differential item functioning (DIF) using hierarchical logistic regression models: Journal of Educational and Behavioral Statistics Vol 27(1) Spr 2002, 53-76.
  • Takane, Y. (1978). A maximum likelihood method for nonmetric multidimensional scaling: I. The case in which all empirical pairwise orderings are independent: Evaluations: Japanese Psychological Research Vol 20(3) Sep 1978, 105-114.
  • Takane, Y. (1981). MDSORT: A special-purpose multidimensional scaling program for sorting data: Behavior Research Methods & Instrumentation Vol 13(5) Oct 1981, 698.
  • Takane, Y., & Carroll, J. D. (1981). Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities: Psychometrika Vol 46(4) Dec 1981, 389-405.
  • Tanaka, J. S. (1987). "How big is big enough?": Sample size and goodness of fit in structural equation models with latent variables: Child Development Vol 58(1) Feb 1987, 134-146.
  • Taniguchi, M., Puri, M. L., & Kondo, M. (1996). Nonparametric Approach for Non-Gaussian Vector Stationary Processes: Journal of Multivariate Analysis Vol 56(2) Feb 1996, 259-283.
  • TenVergert, E., Kingma, J., & Taerum, T. (1989). Psychology of computer use: VIII. Utilizing a nonparametric item response model to develop unidimensional scales: MOKSCAL: Perceptual and Motor Skills Vol 68(3, Pt 1) Jun 1989, 987-1000.
  • Thacker, C. (2004). Review of How to Design and Report Experiments: Psychology Learning & Teaching Vol 3(2) Mar 2004, 137-138.
  • Toothaker, L. E., & Newman, D. A. (1994). Nonparametric competitors to the two-way ANOVA: Journal of Educational and Behavioral Statistics Vol 19(3) Fal 1994, 237-273.
  • Trippi, R. R., & Settle, R. B. (1976). A nonparametric coefficient of internal consistency: Multivariate Behavioral Research Vol 11(4) Oct 1976, 419-424.
  • Tsangari, H., & Akritas, M. G. (2004). Nonparametric ANCOVA with two and three covariates: Journal of Multivariate Analysis Vol 88(2) Feb 2004, 298-319.
  • Turpin, W. (1976). Use of the Fisher Exact Test on single-subject data: Research & the Retarded Vol 3(3) 1976, 89-97.
  • Utzet, F., & Sanchez, A. (1992). Some applications of the bootstrap to survival analysis: Anuario de Psicologia Vol 55(4) Dec 1992, 155-167.
  • Vallejo, G., Arnau, J., Bono, R., Cuesta, M., Fernandez, P., & Herrero, J. (2002). Analysis of trans-sectional short time-series designs by means of parametric and nonparametric procedures: Metodologia de las Ciencias del Comportamiento Vol 4(2) 2002, 301-323.
  • van Abswoude, A. A. H., van der Ark, L. A., & Sijtsma, K. (2004). A comparative study of test data dimensionality assessment procedures under nonparametric IRT models: Applied Psychological Measurement Vol 28(1) Jan 2004, 3-24.
  • Van Bergem, P., Ditrichs, R., & Simon, S. (1986). A BASIC program for nonparametric analyses of proximity matrices: Behavior Research Methods, Instruments & Computers Vol 18(4) Aug 1986, 407-408.
  • Vanhuele, M., Dekimpe, M. G., Sharma, S., & Morrison, D. G. (1995). Probability models for duration: The data don't tell the whole story: Organizational Behavior and Human Decision Processes Vol 62(1) Apr 1995, 1-13.
  • Vegelius, J. (1975). SIEGEL, a FORTRAN IV program for nonparametrical methods: Educational and Psychological Measurement Vol 35(3) Fal 1975, 713-715.
  • Velicer, W. F., Peacock, A. C., & Jackson, D. N. (1982). A comparison of component and factor patterns: A Monte Carlo approach: Multivariate Behavioral Research Vol 17(3) Jul 1982, 371-388.
  • Verguts, T., & Storms, G. (2003). Decision-bound theory and the influence of familiarity: Psychonomic Bulletin & Review Vol 10(1) Mar 2003, 141-148.
  • von Collani, G. (1983). NONPARAM: A BASIC program package for nonparametric procedures: Behavior Research Methods & Instrumentation Vol 15(1) Feb 1983, 104.
  • Von Eye, A. (2004). Robustness is parameter-specific a comment on Rasch and Guiard's robustness study: Psychology Science Vol 46(4) 2004, 544-548.
  • von Eye, A., Neubauer, A., & Stemmler, M. (1996). The Median Quartiles Test revisited: Studia Psychologica Vol 38(1-2) 1996, 79-84.
  • Wagner, E. E. (1976). The Friedman two-way analysis of variance as a test for ranking error: Educational and Psychological Measurement Vol 36(3) Fal 1976, 615-617.
  • Wampold, B. E., & Margolin, G. (1982). Nonparametric strategies to test the independence of behavioral states in sequential data: Psychological Bulletin Vol 92(3) Nov 1982, 755-765.
  • Wang, Q. (2006). Nonparametric regression function estimation with surrogate data and validation sampling: Journal of Multivariate Analysis Vol 97(5) May 2006, 1142-1161.
  • Wastell, D. G., & Nimmo-Smith, I. (1986). The polarity coincidence correlator: Significance testing and other issues: Bulletin of the Psychonomic Society Vol 24(3) May 1986, 211-212.
  • White, A. P., Still, A. W., & Harris, P. W. (1978). RANOVA: A FORTRAN IV program for four-way Monte Carlo analysis of variance: Behavior Research Methods & Instrumentation Vol 10(5) Oct 1978, 732.
  • Wiedermann, W. T., & Alexandrowicz, R. W. (2007). A plea for more general tests than those for location only: Further considerations on Rasch & Guiard's 'The robustness of parametric statistical methods': Psychology Science Vol 49(1) 2007, 2-12.
  • Wike, E. L. (1974). Some nonparametric multiple-comparison tests: Perceptual and Motor Skills Vol 38(3, Pt 2) Jun 1974, 1055-1058.
  • Wike, E. L., & Church, J. D. (1977). Further comments on nonparametric multiple-comparison tests: Perceptual and Motor Skills Vol 45(3, Pt 1) Dec 1977, 917-918.
  • Wike, E. L., & Church, J. D. (1978). A Monte Carlo investigation of four nonparametric multiple-comparison tests for k independent groups: Bulletin of the Psychonomic Society Vol 11(1) Jan 1978, 25-28.
  • Wike, E. L., & Church, J. D. (1980). Monte Carlo studies of Levy's "nonparametric large-sample pairwise comparisons." Psychological Bulletin Vol 88(3) Nov 1980, 607-613.
  • Wilcox, R. R. (1991). Non-parametric analysis of covariance based on predicted medians: British Journal of Mathematical and Statistical Psychology Vol 44(1) May 1991, 221-230.
  • Wilcox, R. R. (2004). A multivariate projection-type analogue of the Wilcoxon-Mann-Whitney test: British Journal of Mathematical and Statistical Psychology Vol 57(2) Nov 2004, 205-213.
  • Wilcox, R. R. (2005). An Approach to ANCOVA that Allows Multiple Covariates, Nonlinearity, and Heteroscedasticity: Educational and Psychological Measurement Vol 65(3) Jun 2005, 442-450.
  • Wilcox, R. R. (2006). Testing the Hypothesis of a Homoscedastic Error Term in Simple, Nonparametric Regression: Educational and Psychological Measurement Vol 66(1) Feb 2006, 85-92.
  • Williams, R. H. (1984). Addendum to Buckalew's "Nonparametrics and psychology: A revitalized alliance." Perceptual and Motor Skills Vol 59(1) Aug 1984, 77-78.
  • Wilson, K. V. (1956). A distribution-free test of analysis of variance hypotheses: Psychological Bulletin Vol 53(1) Jan 1956, 96-101.
  • Winter, R. B. (1974). Nonparametric density estimation and statistical discrimination: Psychological Bulletin Vol 81(6) Jun 1974, 371-379.
  • Wittink, D. R., & Cattin, P. (1981). Alternative estimation methods for conjoint analysis: A Monte Carlo study: Journal of Marketing Research Vol 18(1) Feb 1981, 101-106.
  • Wood, D. L., & Wood, D. (1984). TINT: A Microsoft BASIC t integration program: Behavior Research Methods, Instruments & Computers Vol 16(5) Oct 1984, 479-480.
  • Wyatt, M. T. (1995). An empirical examination of selected difference analysis techniques for the evaluation of healthcare quality assessment data. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Xia, Y., & Li, W. K. (2002). Asymptotic behavior of bandwidth selected by the cross-validation method for local polynomial fitting: Journal of Multivariate Analysis Vol 83(2) Nov 2002, 265-287.
  • Xu, J.-L. (1994). Nonparametric estimation of a distribution function in biased sampling models. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Xu, X., & Douglas, J. (2006). Computerized adaptive testing under nonparametric IRT models: Psychometrika Vol 71(1) Mar 2006, 121-137.
  • Yaffee, R. A. (1996). A basic guide to statistical research and discovery: Planning and selecting statistical analyses. Thousand Oaks, CA: Sage Publications, Inc.
  • Yang, C.-C. (1999). Graphical diagnostic methods for regression models: A Monte Carlo study with application of Taiwanese kindergarten educators' work motivation. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Yoshizawa, C. N. (1985). Some tests of symmetry: Dissertation Abstracts International.
  • Young, F. W., & Null, C. H. (1978). Multidimensional scaling of nominal data: The recovery of metric information with ALSCAL: Psychometrika Vol 43(3) Sep 1978, 367-379.
  • Young, F. W., Takane, Y., & Lewyckyj, R. (1978). Three notes on ALSCAL: Psychometrika Vol 43(3) Sep 1978, 433-435.
  • Youngman, G. H. (1976). Calculation of Mood's dispersion test statistic using Mielke's adjustment for ties: A program for use on a computer terminal: Behavior Research Methods & Instrumentation Vol 8(5) Oct 1976, 469.
  • Zar, J. H. (1976). Watson's nonparametric two-sample test: Behavior Research Methods & Instrumentation Vol 8(6) Dec 1976, 513.
  • Zhang, Z., & Schoeps, N. (1997). On robust estimation of effect size under semiparametric models: Psychometrika Vol 62(2) Jun 1997, 201-214.
  • Zimmerman, D. W. (1993). Mimicking properties of nonparametric rank tests using scores that are not ranks: Journal of General Psychology Vol 120(4) Oct 1993, 509-516.
  • Zimmerman, D. W. (1993). A note on nonindependence and nonparametric tests: Perceptual and Motor Skills Vol 76(2) Apr 1993, 407-412.
  • Zimmerman, D. W. (1994). Note on the influence of distribution of shape on nonparametric tests: Perceptual and Motor Skills Vol 79(3, Pt 1) Dec 1994, 1160-1162.
  • Zimmerman, D. W. (1994). A note on the influence of outliers on Parametric and Nonparametric tests: Journal of General Psychology Vol 121(4) Oct 1994, 391-401.
  • Zimmerman, D. W. (1995). Increasing the power of the ANOVA F test for outlier-prone distributions by modified ranking methods: Journal of General Psychology Vol 122(1) Jan 1995, 83-94.
  • Zimmerman, D. W. (1996). An efficient alternative to the Wilcoxon signed-ranks test for paired nonnormal data: Journal of General Psychology Vol 123(1) Jan 1996, 29-40.
  • Zimmerman, D. W. (1998). Invalidation of parametric and nonparametric statistical tests by concurrent violation of two assumptions: Journal of Experimental Education Vol 67(1) Fal 1998, 55-68.
  • Zimmerman, D. W. (2000). Statistical significance levels of nonparametric tests biased by heterogeneous variances of treatment groups: Journal of General Psychology Vol 127(4) Oct 2000, 354-364.
  • Zimmerman, D. W. (2003). A warning about the large-sample Wilcoxon-Mann-Whitney test: Understanding Statistics Vol 2(4) Oct 2003, 267-280.
  • Zimmerman, D. W. (2004). Inflation of Type I Error Rates by Unequal Variances Associated with Parametric, Nonparametric, and Rank-Transformation Tests: Psicologica Vol 25(1) 2004, 103-133.
  • Zimmerman, D. W., & Zumbo, B. D. (1990). Effect of outliers on the relative power of parametric and nonparametric statistical tests: Perceptual and Motor Skills Vol 71(1) Aug 1990, 339-349.
  • Zumbo, B. D., & Zimmerman, D. W. (1993). Alternatives to classical statistical procedures: Introduction to the symposium: Canadian Psychology/Psychologie Canadienne Vol 34(4) Oct 1993, 381-383.
  • Zwick, R. (1985). Nonparametric one-way multivariate analysis of variance: A computational approach based on the Pillai-Bartlett trace: Psychological Bulletin Vol 97(1) Jan 1985, 148-152.
  • Zwick, R. (1986). Rank and normal scores alternatives to Hotelling's Tsuperscript 2: Multivariate Behavioral Research Vol 21(2) Apr 1986, 169-186.


Please copy and paste this prompt to other appropriate areas. Feel free to edit as necessary

Instructions_for_archiving_academic_and_professional_materials

Nonparametric statistics : Academic support materials

Around Wikia's network

Random Wiki