Fandom

Psychology Wiki

Noncentral F-distribution

34,203pages on
this wiki
Add New Page
Talk0 Share

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory


In probability theory and statistics, the noncentral F-distribution is a continuous probability distribution that is a generalization of the (ordinary) F-distribution. It describes the distribution of the quotient (X/n1)/(Y/n2), where the numerator X has a noncentral chi-squared distribution with n1 degrees of freedom and the denominator Y has a central chi-squared distribution n2 degrees of freedom. It is also required that X and Y are statistically independent of each other.

It is the distribution of the test statistic in analysis of variance problems when the null hypothesis is false. The noncentral F-distribution is used to find the power function of such a test.

Occurrence and specification Edit

If X is a noncentral chi-squared random variable with noncentrality parameter \lambda and \nu_1 degrees of freedom, and Y is a chi-squared random variable with \nu_2 degrees of freedom that is statistically independent of X, then


F=\frac{X/\nu_1}{Y/\nu_2}

is a noncentral F-distributed random variable. The probability density function for the noncentral F-distribution is [1]


p(f)
=\sum\limits_{k=0}^\infty\frac{e^{-\lambda/2}(\lambda/2)^k}{ B\left(\frac{\nu_2}{2},\frac{\nu_1}{2}+k\right) k!}
\left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}+k}
\left(\frac{\nu_2}{\nu_2+\nu_1f}\right)^{\frac{\nu_1+\nu_2}{2}+k}f^{\nu_1/2-1+k}

when f\ge0 and zero otherwise. The degrees of freedom \nu_1 and \nu_2 are positive. The noncentrality parameter \lambda is nonnegative. The term B(x,y) is the beta function, where


B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.


The cumulative distribution function for the noncentral F-distribution is


F(x|d_1,d_2,\lambda)=\sum\limits_{j=0}^\infty\left(\frac{\left(\frac{1}{2}\lambda\right)^j}{j!}e^{-\frac{\lambda}{2}}\right)I\left(\frac{d_1x}{d_2 + d_1x}\bigg|\frac{d_1}{2}+j,\frac{d_2}{2}\right)

where I is the regularized incomplete beta function.


The mean and variance of the noncentral F-distribution are


\mbox{E}\left[F\right]=
\begin{cases}
\frac{\nu_2(\nu_1+\lambda)}{\nu_1(\nu_2-2)}
&\nu_2>2\\
\mbox{Does not exist}
&\nu_2\le2\\
\end{cases}

and


\mbox{Var}\left[F\right]=
\begin{cases}
2\frac{(\nu_1+\lambda)^2+(\nu_1+2\lambda)(\nu_2-2)}{(\nu_2-2)^2(\nu_2-4)}\left(\frac{\nu_2}{\nu_1}\right)^2
&\nu_2>4\\
\mbox{Does not exist}
&\nu_2\le4.\\
\end{cases}

Special cases Edit

When λ = 0, the noncentral F-distribution becomes the F-distribution.

Related distributions Edit

Z has a noncentral chi-squared distribution if

 Z=\lim_{\nu_2\to\infty}\nu_1 F

where F has a noncentral F-distribution.

Implementations Edit

The noncentral F-distribution is implemented in the R language (e.g., pf function), in MATLAB (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) in Mathematica (NoncentralFRatioDistribution function), in NumPy (random.noncentral_f), and in Boost C++ Libraries.[2]

A collaborative wiki page implements an interactive online calculator, programmed in R language, for noncentral t, chisquare, and F, at the Institute of Statistics and Econometrics, School of Business and Economics, Humboldt-Universität zu Berlin.[3]

Notes Edit

  1. S. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, (New Jersey: Prentice Hall, 1998), p. 29.
  2. John Maddock, Paul A. Bristow, Hubert Holin, Xiaogang Zhang, Bruno Lalande, Johan Råde. Noncentral F Distribution: Boost 1.39.0. Boost.org. URL accessed on 20 August 2011.
  3. Sigbert Klinke. Comparison of noncentral and central distributions. Humboldt-Universität zu Berlin.

References Edit

External links Edit

Bvn-small Probability distributions [[[:Template:Tnavbar-plain-nodiv]]]
Univariate Multivariate
Discrete: BernoullibinomialBoltzmanncompound PoissondegeneratedegreeGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomial
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-squareinverse gaussianinverse gammaKumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)ParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVoigtvon MisesWeibullWigner semicircle DirichletKentmatrix normalmultivariate normalvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropy phase-typeposterior priorquasisampling
</center>
This page uses Creative Commons Licensed content from Wikipedia (view authors).

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki