Fandom

Psychology Wiki

Nonparametric statistical tests

Redirected from Non-parametric statistic

34,203pages on
this wiki
Add New Page
Talk0 Share

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory


List of testsEdit

See alsoEdit

ReferencesEdit

  • Aaronson, D., & Watts, B. (1987). Extensions of Grier's computational formulas for A' and B" to below-chance performance: Psychological Bulletin Vol 102(3) Nov 1987, 439-442.
  • Abe, M. (1991). A moving ellipsoid method for nonparametric regression and its application to logit diagnostics with scanner data: Journal of Marketing Research Vol 28(3) Aug 1991, 339-346.
  • Abe, M. (1998). Measuring consumer, nonlinear brand choice response to price: Journal of Retailing Vol 74(4) Fal 1998, 541-568.
  • Agresti, A., & Wackerly, D. (1977). Some exact conditional tests of independence for RxC cross-classification tables: Psychometrika Vol 42(1) Mar 1977, 111-125.
  • Akritas, M. G., Kuha, J., & Osgood, D. W. (2002). A nonparametric approach to matched pairs with missing data: Sociological Methods & Research Vol 30(3) Feb 2002, 425-454.
  • Alder, H. L. (1975). Statistics--Rapid Intuitive Overview: PsycCRITIQUES Vol 20 (3), Mar, 1975.
  • Alterman, A. I., Cacciola, J. S., Habing, B., & Lynch, K. G. (2007). Addiction Severity Index Recent and Lifetime Summary Indexes Based on Nonparametric Item Response Theory Methods: Psychological Assessment Vol 19(1) Mar 2007, 119-132.
  • Altham, P. M. (1973). A non-parametric measure of signal discriminability: British Journal of Mathematical and Statistical Psychology Vol 26(1) May 1973, 1-12.
  • Anderson, J. C., Gerbing, D. W., & Narayanan, A. (1985). A comparison of two alternate residual goodness-of-fit indices: Journal of the Market Research Society Vol 27(4) Oct 1985, 283-291.
  • Angelini, C., De Canditiis, D., & Leblanc, F. (2003). Wavelet regression estimation in nonparametric mixed effect models: Journal of Multivariate Analysis Vol 85(2) May 2003, 267-291.
  • Arndt, S., Turvey, C., Coryell, W. H., Dawson, J. D., Leon, A. C., & Akiskal, H. S. (2000). Charting patients' course: A comparison of statistics used to summarize patient course in longitudinal and repeated measures studies: Journal of Psychiatric Research Vol 34(2) Mar-Apr 2000, 105-113.
  • Arnold, A. M. (1993). Nonparametric approaches to the reliability of psychometric tests in Alzheimer's disease: Dissertation Abstracts International.
  • Artem'Eva, E. Y., Meshalkin, L. D., Morozova, I. V., Sorokina, E. G., & Khomskaya, E. D. (1964). An attempt to utilize non-parametric statistical methods to describe eye movement curves: Voprosy Psychologii No 5 1964, 122-126.
  • Austin, E. (2005). Review of Handbook of parametric and nonparametric statistical procedures: British Journal of Mathematical and Statistical Psychology Vol 58(2) Nov 2005, 382.
  • Baba, Y. (1986). Graphical analysis of rank data: Behaviormetrika No 19 Jan 1986, 1-15.
  • Bai, Z., Chen, Z., & Wu, Y. (2003). Convergence rate of the best-r-point-average estimator for the maximizer of a nonparametric regression function: Journal of Multivariate Analysis Vol 84(2) Feb 2003, 319-334.
  • Bakeman, R., McArthur, D., & Quera, V. (1996). Detecting group differences in sequential association using sampled permutations: Log odds, kappa, and phi compared: Behavior Research Methods, Instruments & Computers Vol 28(3) Aug 1996, 446-457.
  • Bakirov, N. K., Rizzo, M. L., & Szekely, G. J. (2006). A multivariate nonparametric test of independence: Journal of Multivariate Analysis Vol 97(8) Sep 2006, 1742-1756.
  • Baringhaus, L., & Franz, C. (2004). On a new multivariate two-sample test: Journal of Multivariate Analysis Vol 88(1) Jan 2004, 190-206.
  • Barth, A.-R., & Lienert, G. A. (1987). The Chi-square Margants Test as validity criterion for factor analyses: Psychologische Beitrage Vol 29(1) 1987, 31-41.
  • Baumler, G., & Lienert, G. A. (1993). Re-evaluation of the Yerkes-Dodson law by nonparametric tests of trend: Studia Psychologica Vol 35(4-5) 1993, 431-436.
  • Beasley, T. M. (2000). Nonparametric tests for analyzing interactions among intra-block ranks in multiple group repeated measures designs: Journal of Educational and Behavioral Statistics Vol 25(1) Spr 2000, 20-59.
  • Bennett, B. M. (1964). A non-parametric test for randomness in a sequence of multinomial trials: Biometrics 20(1) 1964, 182-190.
  • Beran, R., Bilodeau, M., & Lafaye de Micheaux, P. (2007). Nonparametric tests of independence between random vectors: Journal of Multivariate Analysis Vol 98(9) Oct 2007, 1805-1824.
  • Berkhof, J., & Snijders, T. A. B. (2001). Variance component testing in multilevel models: Journal of Educational and Behavioral Statistics Vol 26(2) Sum 2001, 133-152.
  • Berry, K. J., Johnston, J. E., & Mielke, P. W., Jr. (2007). An alternative measure of effect size for Cochran's Q test for related proportions: Perceptual and Motor Skills Vol 104(3, Pt2) Jun 2007, 1236-1242.
  • Berry, K. J., & Mielke, P. W. (1976). Large sample confidence limits for Goodman and Kruskal's proportional prediction measure TAU-sub(b): Educational and Psychological Measurement Vol 36(3) Fal 1976, 747-751.
  • Berry, K. J., & Mielke, P. W. (1983). A rapid FORTRAN subroutine for the Fisher exact probability test: Educational and Psychological Measurement Vol 43(1) Spr 1983, 167-171.
  • Berry, K. J., & Mielke, P. W. (1985). Subroutines for computing exact chi-square and Fisher's exact probability tests: Educational and Psychological Measurement Vol 45(1) Spr 1985, 153-159.
  • Berry, K. J., & Mielke, P. W. (1996). Nonasymptotic probability values for Cochran's Q statistic: A FORTRAN 77 program: Perceptual and Motor Skills Vol 82(1) Feb 1996, 303-306.
  • Bilker, W. B., Brensinger, C., & Gur, R. C. (2004). A Two Factor ANOVA-like Test for Correlated Correlations: CORANOVA: Multivariate Behavioral Research Vol 39(4) Oct 2004, 565-594.
  • Bintig, A. (1980). The efficiency of various estimations of reliability of rating scales: Educational and Psychological Measurement Vol 40(3) Fal 1980, 619-643.
  • Blair, R. C. (1982). An examination of some commonly held attitudes regarding the nature and usefulness of nonparametric tests: Florida Journal of Educational Research Vol 24 1982, 29-38.
  • Blair, R. C., Sawilowsky, S. S., and Higgins, J. J. (1987). Limitations of the rank transform in factorial ANOVA. Communications in Statistics: Computations and Simulations, B16, 1133-1145.
  • Bockenholt, U., & Langeheine, R. (1996). Latent change in recurrent choice data: Psychometrika Vol 61(2) Jun 1996, 285-301.
  • Boersma, F. J., DeJonge, J. J., & Stellwagen, W. R. (1964). A Power Comparison of the F and L Tests--I: Psychological Review Vol 71(6) Nov 1964, 505-513.
  • Bogetoft, P., & Nielsen, K. (2005). Internet Based Benchmarking: Group Decision and Negotiation Vol 14(3) May 2005, 195-215.
  • Bolt, D. M. (2002). A Monte Carlo comparison of parametric and nonparametric polytomous DIF detection methods: Applied Measurement in Education Vol 15(2) Apr 2002, 113-141.
  • Bolt, D. M., & Gierl, M. J. (2006). Testing Features of Graphical DIF: Application of a Regression Correction to Three Nonparametric Statistical Tests: Journal of Educational Measurement Vol 43(4) Win 2006, 313-333.
  • Boneau, C. A. (1962). A comparison of the power of the U and t tests: Psychological Review Vol 69(3) May 1962, 246-256.
  • Bonett, D. G., & Bentler, P. M. (1983). Goodness-of-fit procedures for the evaluation and selection of log-linear models: Psychological Bulletin Vol 93(1) Jan 1983, 149-166.
  • Boomsma, A. (2003). Introduction to nonpammetric item response modeling: Psychometrika Vol 68(2) Jun 2003, 323-326.
  • Borys, S. V., & Corrigan, J. G. (1980). A BASIC program for nonparametric post hoc comparisons: Behavior Research Methods & Instrumentation Vol 12(6) Dec 1980, 635.
  • Bradley, J. V. (1978). Robustness? : British Journal of Mathematical and Statistical Psychology Vol 31(2) Nov 1978, 144-152.
  • Bradley, J. V. (1979). A nonparametric test for interactions of any order: Journal of Quality Technology Vol 11(4) Oct 1979, 177-184.
  • Bredenkamp, J. (1974). The nonparametric examination of interactions: Psychologische Beitrage Vol 16(3) 1974, 398-416.
  • Bremner, F. J., Yost, M., & Nasman, V. T. (1989). Statistical analysis of fuzzy-set data from neuronal networks: Behavior Research Methods, Instruments & Computers Vol 21(2) Apr 1989, 209-212.
  • Brennan, J. (1978). Computer program to compute salient variable similarity index and congruence coefficients for matching factor matrices: Educational and Psychological Measurement Vol 38(1) Spr 1978, 183-185.
  • Bridge, P. K., & Sawilowsky, S. (1999) Increasing physician’s awareness of the impact of statistical tests on research outcomes: Investigating the comparative power of the Wilcoxon Rank-Sum test and independent samples t-test to violations from normality. Journal of Clinical Epidemiology, 52, 229-236.
  • Briley, T. S. (1972). Non-parametric analogs of biserial and point-biserial correlation in the item analysis of normative and criterion-referenced tests: Dissertation Abstracts International Vol.
  • Brooks, G. P. (2003). Using Monte Carlo methods to teach statistics: The MC2G computer program: Understanding Statistics Vol 2(2) Apr 2003, 137-150.
  • Brown, R. L. (1985). RANCOVA: A Minitab macro for the calculation of nonparametric (ranked) analysis of covariance: Behavior Research Methods, Instruments & Computers Vol 17(5) Oct 1985, 573-575.
  • Brown, S., & Heathcote, A. (2002). On the use of nonparametric regression in assessing parametric regression models: Journal of Mathematical Psychology Vol 46(6) Dec 2002, 716-730.
  • Brusco, M. J. (2002). Identifying a reordering of rows and columns for multiple proximity matrices using multiobjective programming: Journal of Mathematical Psychology Vol 46(6) Dec 2002, 731-745.
  • Buck, J. L., & Finner, S. L. (1985). A still further note on Freeman's measure of association: Psychometrika Vol 50(3) Sep 1985, 365-366.
  • Buckalew, L. W. (1983). Nonparametrics and psychology: A revitalized alliance: Perceptual and Motor Skills Vol 57(2) Oct 1983, 447-450.
  • Bunea, F., & McKeague, I. W. (2005). Covariate selection for semiparametric hazard function regression models: Journal of Multivariate Analysis Vol 92(1) Jan 2005, 186-204.
  • Bunner, J., & Sawilowsky, S. (2002). Alternatives to Sw in the confidence interval of the trimmed mean. Journal of Modern Applied Statistical Methods, 1(1), 182-187.
  • Burnett, T. D., & Barr, D. R. (1977). A nonparametric analogy of analysis of covariance: Educational and Psychological Measurement Vol 37(2) Sum 1977, 341-348.
  • Cai, T. T. (2008). On information pooling, adaptability and superefficiency in nonparametric function estimation: Journal of Multivariate Analysis Vol 99(3) Mar 2008, 421-436.
  • Caldeira, J. D. (1980). Parametric assumptions to some nonparametric measures of sensory efficiency: Human Factors Vol 22(1) Feb 1980, 119-120.
  • Camilli, G., & Hopkins, K. D. (1979). Testing for association in 2x2 contingency tables with very small sample sizes: Psychological Bulletin Vol 86(5) Sep 1979, 1011-1014.
  • Cardot, H. (2002). Spatially Adaptive Splines for Statistical Linear Inverse Problems: Journal of Multivariate Analysis Vol 81(1) Apr 2002, 100-119.
  • Cattin, P. (1979). Comment on a Monte Carlo investigation of scaling as an alternative to regression: Organizational Behavior & Human Performance Vol 23(1) Feb 1979, 113-116.
  • Chakraborti, S., & Gibbons, J. D. (1992). One-sided nonparametric comparison of treatments with a standard for unequal sample sizes: Journal of Experimental Education Vol 60(3) Spr 1992, 235-242.
  • Chang, H. (1994). The analysis of directional data: Performance comparisons of randomization and parametric methods. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Chapman, D. W., Blackburn, R. T., Austin, A. E., & Hutcheson, S. M. (1983). Expanding analytic possibilities of Rokeach Values data: Educational and Psychological Measurement Vol 43(2) Sum 1983, 419-421.
  • Chechile, R. A. (2004). Review of Nonparametric Statistical Methods for Complete and Censored Data: Journal of Mathematical Psychology Vol 48(6) Dec 2004, 436.
  • Chen, R. S., & Dunlap, W. P. (1993). SAS procedures for approximate randomization tests: Behavior Research Methods, Instruments & Computers Vol 25(3) Aug 1993, 406-409.
  • Chen, T.-Y. (2002). A Monte Carlo study of three new nonparametric tests for equivalence. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Cheng, M.-Y., & Hall, P. (2006). Methods for tracking support boundaries with corners: Journal of Multivariate Analysis Vol 97(8) Sep 2006, 1870-1893.
  • Chicken, E., & Cai, T. T. (2005). Block thresholding for density estimation: Local and global adaptivity: Journal of Multivariate Analysis Vol 95(1) Jul 2005, 76-106.
  • Child, I. L. (1946). A note on Grant's "New Statistical Criteria for Learning and Problem Solution." Psychological Bulletin Vol 43(6) Nov 1946, 558-561.
  • Church, J. D., & Wike, E. L. (1979). A Monte Carlo study of nonparametric multiple-comparison tests for a two-way layout: Bulletin of the Psychonomic Society Vol 14(2) Aug 1979, 95-98.
  • Church, J. D., & Wike, E. L. (1980). Two Monte Carlo studies of Silverstein's nonparametric multiple comparison tests: Psychological Reports Vol 46(2) Apr 1980, 403-407.
  • Church, J. D., & Wike, E. L. (1981). Silverstein's nonparametric many-one test for a two-way design: A Monte Carlo study: Psychological Reports Vol 49(3) Dec 1981, 931-934.
  • Cicchetti, D. V. (2002). A Comprehensive View of the Biostatistical Landscape: PsycCRITIQUES Vol 47 (4), Aug, 2002.
  • Ciechalski, J. C. (1988). A BASIC program for computing the Kruskal-Wallis H: Educational and Psychological Measurement Vol 48(3) Fal 1988, 707-709.
  • Cliff, N. (1996). Answering ordinal questions with ordinal data using ordinal statistics: Multivariate Behavioral Research Vol 31(3) 1996, 331-350.
  • Cochran, D. J., & Gibson, J. D. (1977). A simple nonparametric test for correlation: Human Factors Vol 19(3) Jun 1977, 273-278.
  • Cooper, M. (1975). A non-parametric test for increasing trend: Educational and Psychological Measurement Vol 35(2) Sum 1975, 303-306.
  • Cotton, J. (1978). Review of Understandable statistics: Concepts and methods: PsycCRITIQUES Vol 23 (6), Jun, 1978.
  • Cousineau, D., Brown, S., & Heathcote, A. (2004). Fitting distributions using maximum likelihood: Methods and packages: Behavior Research Methods, Instruments & Computers Vol 36(4) Nov 2004, 742-756.
  • Craig, A. (1979). Nonparametric measures of sensory efficiency for sustained monitoring tasks: Human Factors Vol 21(1) Feb 1979, 69-77.
  • Cziko, G. A. (1984). An improvement over Guttman scalogram analysis: A computer program for evaluating cumulative, nonparametric scales of dichotomous items: Educational and Psychological Measurement Vol 44(1) Spr 1984, 159-163.
  • Daouia, A., & Simar, L. (2005). Robust nonparametric estimators of monotone boundaries: Journal of Multivariate Analysis Vol 96(2) Oct 2005, 311-331.
  • Darom, E., & Rimon, J. p. (1979). Computer analysis of split-plot designs with unequal N: Educational and Psychological Measurement Vol 39(1) Spr 1979, 231-234.
  • Davies, R. B., & Pickles, A. R. (1983). A moments approach for omitted variables in residential histories and other panel data: Journal of Mathematical Sociology Vol 9(3) 1983, 227-241.
  • Davis, J. A., & Schooler, S. R. (1974). Nonparametric path analysis: The multivariate structure of dichotomous data when using the odds ratio or Yule's Q: Social Science Research Vol 3(4) Dec 1974, 267-297.
  • Davison, T. C., & Jagacinski, R. J. (1977). Nonparametric analysis of signal detection confidence ratings: Behavior Research Methods & Instrumentation Vol 9(6) Dec 1977, 545-546.
  • Dawson, D. V., & Siegler, I. C. (1996). Approaches to the nonparametric analysis of limited longitudinal data sets: Experimental Aging Research Vol 22(1) Jan-Mar 1996, 33-57.
  • de Gruijter, D. N. M. (1994). Comparison of the nonparametric Mokken Model and parametric IRT models using latent class analysis: Applied Psychological Measurement Vol 18(1) Mar 1994, 27-34.
  • de Koning, E., Sijtsma, K., & Hamers, J. H. M. (2002). Comparison of four IRT models when analyzing two tests for inductive reasoning: Applied Psychological Measurement Vol 26(3) Sep 2002, 302-320.
  • Degerman, R. (1982). Coefficients of correlation and concordance for sets of triads judgments: Educational and Psychological Measurement Vol 42(3) Fal 1982, 807-814.
  • Deni, R. (1977). BASIC-PLUS programs for Sackett's lag sequential analysis: Behavior Research Methods & Instrumentation Vol 9(4) Aug 1977, 383-384.
  • Dette, H., & Derbort, S. (2001). Analysis of Variance in Nonparametric Regression Models: Journal of Multivariate Analysis Vol 76(1) Jan 2001, 110-137.
  • Domhof, S., & Brunner, E. (2002). Discussion on "A nonparametric approach to matched pairs with missing data." Sociological Methods & Research Vol 30(3) Feb 2002, 455-457.
  • Domhof, S., Brunner, E., & Osgood, D. W. (2002). Rank procedures for repeated measures with missing values: Sociological Methods & Research Vol 30(3) Feb 2002, 367-393.
  • Donaldson, W. (1992). Measuring recognition memory: Journal of Experimental Psychology: General Vol 121(3) Sep 1992, 275-277.
  • Douglas, J. A., Stout, W., & DiBello, L. V. (1996). A kernel-smoothed version of SIBTEST with applications to local DIF inference and function estimation: Journal of Educational and Behavioral Statistics Vol 21(4) Win 1996, 333-363.
  • Drasgow, F., Levine, M. V., Williams, B., McLaughlin, M. E., & et al. (1989). Modeling incorrect responses to multiple-choice items with multilinear formula score theory: Applied Psychological Measurement Vol 13(3) Sep 1989, 285-299.
  • Dzhouzha, N. F. (1987). Use of non-parametric statistics in psycho-pedagogical studies: Voprosy Psychologii Vol 4 Jul-Aug 1987, 145-150.
  • Eckes, T. (1982). A nonparametric test for the similarity between object set partitions: Psychologische Beitrage Vol 24(1) 1982, 75-84.
  • Edgington, E. S. (1965). The assumption of homogeneity of variance for the T test and nonparametric tests: Journal of Psychology: Interdisciplinary and Applied 59(1) 1965, 177-179.
  • Edgington, E. S. (1980). Overcoming obstacles to single-subject experimentation: Journal of Educational Statistics Vol 5(3) Fal 1980, 261-267.
  • Edgington, E. S. (1980). Validity of randomization tests for one-subject experiments: Journal of Educational Statistics Vol 5(3) Fal 1980, 235-251.
  • Edgington, E. S. (1982). Nonparametric tests for single-subject multiple schedule experiments: Behavioral Assessment Vol 4(1) Win 1982, 83-91.
  • Edgington, E. S. (1983). The role of permutation groups in randomization tests: Journal of Educational Statistics Vol 8(2) Sum 1983, 121-135.
  • Edgington, E. S. (1992). Nonparametric tests for single-case experiments. Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.
  • Edgington, E. S., Harrod, W. J., Haller, O., Hong, O. P., & et al. (1988). A nonparametric test for reward distribution strategies in the minimal group paradigm: European Journal of Social Psychology Vol 18(6) Dec 1988, 527-529.
  • Edgington, E. S., & Strain, A. R. (1973). Randomization tests: Computer time requirements: Journal of Psychology: Interdisciplinary and Applied Vol 85(1) Sep 1973, 89-95.
  • Efron, B. (1988). Bootstrap confidence intervals: Good or bad? : Psychological Bulletin Vol 104(2) Sep 1988, 293-296.
  • Ehlers, W., & Lienert, G. A. (1976). Area specification in Conover's correlation-trend test: Psychologische Beitrage Vol 18(1) 1976, 54-61.
  • Emery, D. R. (1979). Comparing methods: What is unfair? : Organizational Behavior & Human Performance Vol 23(1) Feb 1979, 117-119.
  • Engelhardt, W. (1979). Non-parametric testing of interaction: Statistical power analysis: Psychologische Beitrage Vol 21(3-4) 1979, 439-449.
  • Etevenon, P., Tortrat, D., & Benkelfat, C. (1985). Electroencephalographic cartography: II. By means of statistical group studies--activation by visual attention: Neuropsychobiology Vol 13(3) Aug 1985, 141-146.
  • Eye, A. v. (1988). Some multivariate developments in nonparametric statistics. New York, NY: Plenum Press.
  • Facer, M. R., & Muller, H.-G. (2003). Nonparametric estimation of the location of a maximum in a response surface: Journal of Multivariate Analysis Vol 87(1) Oct 2003, 191-217.
  • Fernandez, J. R., Mojon, A., & Hermida, R. C. (2004). Comparison of parameters from rhythmometric models with multiple components on hybrid data: Chronobiology International Vol 21(3) 2004, 469-484.
  • Finch, H. (2005). Comparison of the Performance of Nonparametric and Parametric MANOVA Test Statistics when Assumptions Are Violated: Methodology: European Journal of Research Methods for the Behavioral and Social Sciences Vol 1(1) 2005, 27-38.
  • Fisk, A. D., Schneider, W., & Burkhard, J. C. (1982). SENSE: A program for calculating parametric (d') and nonparametric (A' and Ag) indexes of sensitivity: Behavior Research Methods & Instrumentation Vol 14(3) Jun 1982, 361.
  • Fleming, J. S. (1985). An index of fit for factor scales: Educational and Psychological Measurement Vol 45(4) Win 1985, 725-728.
  • Follmann, D. (1988). Consistent estimation in the Rasch model based on nonparametric margins: Psychometrika Vol 53(4) Dec 1988, 553-562.
  • Folsom, R. E. (1985). Probability sample U-statistics: Theory and applications for complex sample designs: Dissertation Abstracts International.
  • Formann, A. K. (1983). Goodness of fit test for the Rasch model through subgroup formation using latent class analysis: Zeitschrift fur Experimentelle und Angewandte Psychologie Vol 30(1) 1983, 45-66.
  • Gaither, N., & Glorfeld, L. (1985). An evaluation of the use of tests of significance in organizational behavior research: Academy of Management Review Vol 10(4) Oct 1985, 787-793.
  • Galan, L., Biscay, R., Rodriguez, J. L., Perez-Abalo, M. C., & et al. (1997). Testing topographic differences between event related brain potentials by using non-parametric combinations of permutation tests: Electroencephalography & Clinical Neurophysiology Vol 102(3) Mar 1997, 240-247.
  • Galla, J. P. (1987). Kendall's tau and Kendall's partial correlation: Two BASIC programs for microcomputers: Behavior Research Methods, Instruments & Computers Vol 19(1) Feb 1987, 55-56.
  • Gammel, G., & Moosbrugger, H. (1982). Nonparametric unconditional randomization-test for one- and two-factorial designs with small sample sizes: Psychologische Beitrage Vol 24(2) 1982, 253-276.
  • Gao, J., Tong, H., & Wolff, R. (2002). Model specification tests in nonparametric stochastic regression models: Journal of Multivariate Analysis Vol 83(2) Nov 2002, 324-359.
  • Garre, F. G., Vermunt, J. K., & Croon, M. A. (2002). Likelihood-ratio tests for order-restricted log-linear models: A comparison of asymptotic and bootstrap methods: Metodologia de las Ciencias del Comportamiento Vol 4(2) 2002, 325-337.
  • Gebert, A. (1977). Testing of interaction effects in 2-2 block designs by simultaneous W-tests: Psychologische Beitrage Vol 19(1) 1977, 121-129.
  • Gebert, A., & Lienert, G. A. (1971). Concordance of "yes no" judgments: Psychologische Beitrage Vol 13(4) 1971, 600-608.
  • Ghoudi, K., Kulperger, R. J., & Remillard, B. (2001). A Nonparametric Test of Serial Independence for Time Series and Residuals: Journal of Multivariate Analysis Vol 79(2) Nov 2001, 191-218.
  • Gibbons, J. D. (1993). Nonparametric measures of association. Thousand Oaks, CA: Sage Publications, Inc.
  • Gilbert, L. H. (1979). PSYCHOSTATS: BASIC programs for data analysis in psychology: Behavior Research Methods & Instrumentation Vol 11(4) Aug 1979, 464.
  • Gliner, G., Goldman, S. R., & Hubert, L. J. (1983). A methodological study on the evaluation of learning from story narratives: Multivariate Behavioral Research Vol 18(1) Jan 1983, 9-36.
  • Gocka, E. F. (1973). Alternate tests for comparing independent groups: Psychological Reports Vol 32(3, Pt 1) Jun 1973, 683-692.
  • Gocka, E. F. (1973). Comments on randomization tests: Psychological Reports Vol 32(1) Feb 1973, 293-294.
  • Grace, H. A. (1954). Facilitating legislative research: Journal of Applied Psychology Vol 38(4) Aug 1954, 268-271.
  • Greenblatt, R. E., & Pflieger, M. E. (2004). Randomization-Based Hypothesis Testing from Event-Related Data: Brain Topography Vol 16(4) Sum 2004, 225-232.
  • Gregoire, T. G., & Driver, B. L. (1987). Analysis of ordinal data to detect population differences: Psychological Bulletin Vol 101(1) Jan 1987, 159-165.
  • Guiard, V., & Rasch, D. (2004). The robustness of two sample tests for means--A reply on von Eye's comment: Psychology Science Vol 46(4) 2004, 549-554.
  • Gupta, S. P. (1988). Nonparametric two way ANOVA by ranks: Indian Journal of Psychometry & Education Vol 19(2) Jul 1988, 57-64.
  • Haase, R. F., & Juster, H. R. (1986). Computing reproduced correlations in structural equation models: Educational and Psychological Measurement Vol 46(1) Spr 1986, 157-161.
  • Hager, W., Lubbeke, B., & Hubner, R. (1983). Violation of assumptions in 2-sample location tests: A review of empirical results: Zeitschrift fur Experimentelle und Angewandte Psychologie Vol 30(3) 1983, 347-386.
  • Hall, P., Nussbaum, M., & Stern, S. E. (1997). On the Estimation of a Support Curve of Indeterminate Sharpness: Journal of Multivariate Analysis Vol 62(2) Aug 1997, 204-232.
  • Hallin, M., Lu, Z., & Tran, L. T. (2004). Kernel density estimation for spatial processes: The L-sub(1) theory: Journal of Multivariate Analysis Vol 88(1) Jan 2004, 61-75.
  • Hamerle, A. (1979). Treatment comparisons of categorical data and independent samples: Psychologische Beitrage Vol 21(1) 1979, 112-124.
  • Hamerle, A., & Kemeny, P. (1979). Simultaneous group comparisons in unlimited random designs and dichotomous survey data: Zeitschrift fur Sozialpsychologie Vol 10(3) 1979, 220-225.
  • Hammond, S. (2003). Review of Introduction to nonparametric item response theory: British Journal of Mathematical and Statistical Psychology Vol 56(2) Nov 2003, 385-386.
  • Hannan, T. E. (1986). CBASIC programs for nonparametric statistical analysis: Behavior Research Methods, Instruments & Computers Vol 18(4) Aug 1986, 403-404.
  • Hansen, N., Kershaw, T., Kochman, A., & Sikkema, K. (2007). A classification and regression trees analysis predicting treatment outcome following a group intervention randomized controlled trial for HIV-positive adult survivors of childhood sexual abuse: Psychotherapy Research Vol 17(4) 2007, 404-415.
  • Haruvy, E. (2002). Identification and testing of modes in beliefs: Journal of Mathematical Psychology Vol 46(1) Feb 2002, 88-109.
  • Harwell, M. R. (1990). A general approach to hypothesis testing for nonparametric tests: Journal of Experimental Education Vol 58(2) Win 1990, 143-156.
  • Harwell, M. R. (1991). Completely randomized factorial analysis of variance using ranks: British Journal of Mathematical and Statistical Psychology Vol 44(2) Nov 1991, 383-401.
  • Harwell, M. R., & Serlin, R. C. (1988). An empirical study of a proposed test of nonparametric analysis of covariance: Psychological Bulletin Vol 104(2) Sep 1988, 268-281.
  • Harwell, M. R., & Serlin, R. C. (1989). A nonparametric test statistic for the general linear model: Journal of Educational Statistics Vol 14(4) Win 1989, 351-371.
  • Headrick, T. C. & Sawilowsky, S. (1999). Simulating correlated nonnormal distributions: Extending the Fleishman power method. Psychometrika, 64, 25-36.
  • Hedges, L. V., & Olkin, I. (1984). Nonparametric estimators of effect size in meta-analysis: Psychological Bulletin Vol 96(3) Nov 1984, 573-580.
  • Helmers, R., Mangku, I. W., & Zitikis, R. (2003). Consistent estimation of the intensity function of a cyclic Poisson process: Journal of Multivariate Analysis Vol 84(1) Jan 2003, 19-39.
  • Hettmansperger, T. P. (1975). Non-parametric inference for ordered alternatives in a randomized block design: Psychometrika Vol 40(1) Mar 1975, 53-62.
  • Hettmansperger, T. P., & McKean, J. W. (1978). Statistical inference based on ranks: Psychometrika Vol 43(1) Mar 1978, 69-79.
  • Hoijtink, H., & Molenaar, I. W. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks: Psychometrika Vol 62(2) Jun 1997, 171-189.
  • Holzmann, H., Bissantz, N., & Munk, A. (2007). Density testing in a contaminated sample: Journal of Multivariate Analysis Vol 98(1) Jan 2007, 57-75.
  • Horrell, J. F., & Lessig, V. P. (1974). A note on a nonparametric test of independence between two vectors: Journal of Marketing Research Vol 11(1) Feb 1974, 106-108.
  • Hsieh, C.-H. (1994). A Monte Carlo comparison of standard deviation estimators among jackknife and bootstrap methods. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Hubert, L. J. (1978). A general formula for the variance of Cohen's weighted kappa: Psychological Bulletin Vol 85(1) Jan 1978, 183-184.
  • Hubert, L. J. (1979). Generalized concordance: Psychometrika Vol 44(2) Jun 1979, 135-142.
  • Hubert, L. J. (1984). Statistical applications of linear assignment: Psychometrika Vol 49(4) Dec 1984, 449-473.
  • Hubert, L. J. (1985). Combinatorial data analysis: Association and partial association: Psychometrika Vol 50(4) Dec 1985, 449-467.
  • Hubert, L. J., & Baker, F. B. (1978). Analyzing the multitrait-multimethod matrix: Multivariate Behavioral Research Vol 13(2) Apr 1978, 163-179.
  • Hubert, L. J., & Baker, F. B. (1978). Evaluating the conformity of sociometric measurements: Psychometrika Vol 43(1) Mar 1978, 31-41.
  • Hubner, R., & Hager, W. (1984). Are nonparametric tests preferable to parametric tests for random distribution? Empirical studies of flow diagrams, decision aids, and recommendations: Zeitschrift fur Experimentelle und Angewandte Psychologie Vol 31(2) 1984, 214-231.
  • Hunter, M. A., & May, R. B. (1993). Some myths concerning parametric and nonparametric tests: Canadian Psychology/Psychologie Canadienne Vol 34(4) Oct 1993, 384-389.
  • Hunter, M. A., & May, R. B. (2003). Statistical testing and null distributions: What to do when samples are not random: Canadian Journal of Experimental Psychology/Revue canadienne de psychologie experimentale Vol 57(3) Sep 2003, 176-188.
  • Hutchinson, T. P. (2002). Should we routinely test for simultaneous location and scale changes? : Ergonomics Vol 45(3) Feb 2002, 248-251.
  • Ichikawa, M., & Konishi, S. (2001). Efficient bootstrap tests for the goodness of fit in covariance structure analysis: Behaviormetrika Vol 28(2) Jul 2001, 103-110.
  • Ivliyev, Y. A. (1987). On the method of mathematical modelling of subjective relations: A letter to the editorial board of Psychologicheski Zhurnal: Psikologicheskii Zhurnal Vol 8(5) Sep-Oct 1987, 137-141.
  • Janosky, J. E., Al-Shboul, Q. M., & Pellitieri, T. R. (1995). Validation of the use of a nonparametric smoother for the examination of data from a single-subject design: Behavior Modification Vol 19(3) Jul 1995, 307-324.
  • Jansen, P. G., Roskam, E. E., & Van den Wollenberg, A. L. (1984). Discussion on the usefulness of the MOKKEN procedure for nonparametric scaling: Psychologische Beitrage Vol 26(4) 1984, 722-735.
  • Jenkins, S. J., Fuqua, D. R., & Froehle, T. C. (1984). A critical examination of use of non-parametric statistics in the Journal of Counseling Psychology: Perceptual and Motor Skills Vol 59(1) Aug 1984, 31-35.
  • Jenkins, S. J., Fuqua, D. R., & Hartman, B. W. (1984). Evaluating criteria for selection of nonparametric statistics: Perceptual and Motor Skills Vol 58(3) Jun 1984, 979-984.
  • Jih, C.-s. (1986). Basic nonparametric statistics for experimental studies: Dissertation Abstracts International.
  • Jimenez Jimenez, C., & Perez Rosa, J. (1989). Experimental designs in behaviour sciences: A method of free distribution variance analysis (non-parametric): Anuario de Psicologia Vol 3(42) 1989, 31-47.
  • Joe, L. T. (1978). Bayesian nonparametric policies in Markov decision models: Dissertation Abstracts International.
  • Johnson, M. S. (2006). Nonparametric estimation of item and respondent locations from unfolding-type items: Psychometrika Vol 71(2) Jun 2006, 257-279.
  • Johnson, N. S. (1976). A note on the use of A' as a measure of sensitivity: Journal of Experimental Child Psychology Vol 22(3) Dec 1976, 530-531.
  • Jones, E. E., & Windholz, M. (1990). The psychoanalytic case study: Toward a method for systematic inquiry: Journal of the American Psychoanalytic Association Vol 38(4) 1990, 985-1015.
  • Junker, B. W., & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models: Applied Psychological Measurement Vol 24(1) Mar 2000, 65-81.
  • Karabatsos, G. (2006). Bayesian nonparametric model selection and model testing: Journal of Mathematical Psychology Vol 50(2) Apr 2006, 123-148.
  • Karabatsos, G., & Sheu, C.-F. (2004). Order-constrained Bayes inference for dichotomous models of unidimensional nonparametric IRT: Applied Psychological Measurement Vol 28(2) Mar 2004, 110-125.
  • Katz, B. M. (1975). A multivariate approach to testing for homogeneity of correlated proportions: Dissertation Abstracts International.
  • Katz, B. M., Marascuilo, L. A., & McSweeney, M. (1985). Nonparametric alternatives for testing main effects hypotheses: A model for combining data across independent studies: Psychological Bulletin Vol 98(1) Jul 1985, 200-208.
  • Katz, B. M., & McSweeney, M. (1980). A multivariate Kruskal-Wallis test with post hoc procedures: Multivariate Behavioral Research Vol 15(3) Jul 1980, 281-297.
  • Katz, B. M., & McSweeney, M. (1983). Some non-parametric tests for analysing ranked data in multi-group repeated measures designs: British Journal of Mathematical and Statistical Psychology Vol 36(1) May 1983, 145-156.
  • Kazdin, A. E. (1980). Obstacles in using randomization tests in single-case experimentation: Journal of Educational Statistics Vol 5(3) Fal 1980, 253-260.
  • Kelley, D. L., & Sawilowsky, S. (1997). Nonparametric alternatives to the F statistic in analysis of variance. Journal of Statistical Computation and Simulation, 58, 343-359.
  • Keppel, G. (1980). Review of Introduction to statistics: A nonparametric approach for the social sciences: PsycCRITIQUES Vol 25 (1), Jan, 1980.
  • Keselman, H. J., & Rogan, J. C. (1977). An evaluation of some non-parametric and parametric tests for multiple comparisons: British Journal of Mathematical and Statistical Psychology Vol 30(1) May 1977, 125-133.
  • Keselman, H. J., Rogan, J. C., & Fier-Walsh, B. J. (1977). An evaluation of some non-parametric and parametric tests for location equality: British Journal of Mathematical and Statistical Psychology Vol 30(2) Nov 1977, 213-221.
  • Keselman, H. J., & Toothaker, L. E. (1973). An empirical comparison of the Marascuilo and Normal Scores nonparametric tests and the Scheffe and Tukey Parametric Tests for Pairwise Comparisons: Proceedings of the Annual Convention of the American Psychological Association 1973, 15-16.
  • Kingma, J., & Reuvekamp, J. (1986). Mokken scale: A Pascal program for nonparametric stochastic scaling: Educational and Psychological Measurement Vol 46(3) Fal 1986, 667-677.
  • Kingma, J., & Reuvekamp, J. (1986). Mokken test for the robustness of nonparametric stochastic Mokken scales: Educational and Psychological Measurement Vol 46(3) Fal 1986, 679-685.
  • Kingma, J., & Taerum, T. (1988). A FORTRAN 77 program for a nonparametric item response model: The Mokken scale analysis: Behavior Research Methods, Instruments & Computers Vol 20(5) Oct 1988, 471-480.
  • Kingma, J., & TenVergert, E. M. (1985). A nonparametric scale analysis of the development of conservation: Applied Psychological Measurement Vol 9(4) Dec 1985, 375-387.
  • Kirkpatrick, J. S. (1981). Nonparametric statistics: Useful tools for counselors: Personnel & Guidance Journal Vol 59(10) Jun 1981, 627-630.
  • Kline, R. B. (2004). Nonparametric Effect Size Indexes. Washington, DC: American Psychological Association.
  • Kohn, M., & Lifshitz, K. (1976). A nonparametric statistical evaluation of changes in evoked potentials to different stimuli: Psychophysiology Vol 13(5) Sep 1976, 392-398.
  • Kraemer, H. C. (1984). Nonparametric effect size estimation: A reply: Psychological Bulletin Vol 96(3) Nov 1984, 569-572.
  • Kraemer, H. C., & Andrews, G. (1982). A nonparametric technique for meta-analysis effect size calculation: Psychological Bulletin Vol 91(2) Mar 1982, 404-412.
  • Kramer, A., Kahan, G., Cooper, D., & Papavasiliou, A. (1974). A non-parametric ranking method for the statistical evaluation of sensory data: Chemical Senses & Flavor Vol 1(1) Jan 1974, 121-133.
  • Krauth, J. (1980). Possible misinterpretations when evaluating psychological time series: Archiv fur Psychologie Vol 133(2) 1980, 139-147.
  • Krauth, J. (1982). Distribution-free tests of homogeneity for dependent samples: Psychologische Beitrage Vol 24(4) 1982, 601-619.
  • Krauth, J. (1983). Nonparametric effect size estimation: A comment on Kraemer and Andrews: Psychological Bulletin Vol 94(1) Jul 1983, 190-192.
  • Krauth, J. (2005). Paradoxes in multidimensional contingency tables: What does this mean for CFA? : Psychology Science Vol 47(3-4) 2005, 304-314.
  • Krauth, J., & Lienert, G. A. (1978). Nonparametric two-sample comparison of learning curves based on orthogonal polynomials: Psychological Research Vol 40(2) 1978, 159-171.
  • Krauth, J., & Lienert, G. A. (1981). Multivariate nonparametric techniques in psychological research: Psychologische Beitrage Vol 23(2) 1981, 226-241.
  • Krauth, J., & Lienert, G. A. (1982). Fundamentals and modifications of configural frequency analysis (CFA): Studia Psychologica Vol 24(3-4) 1982, 283-292.
  • Krieger, A. M., & Green, P. E. (1993). Generalized measures of association for ranked data with an application to prediction accuracy: Journal of Classification Vol 10(1) 1993, 93-114.
  • Kruger, H.-P. (1977). Simultaneous U-tests for the exact examination of main and interaction-effects of 2-2 factorial experimental designs: Psychologische Beitrage Vol 19(1) 1977, 110-120.
  • Kruger, H.-P. (1979). Indications for the application of nonparametric prediction procedures: A discussion of Schulze (1978): "A procedure for multivariate analysis of the terms of rank-ordered variables: Hierarchical analysis of rank-ordered variables." Zeitschrift fur Sozialpsychologie Vol 10(1) 1979, 94-104.
  • Kruger, H.-P., & Buchta, H. (1980). A non-parametric comparison of test profiles and trend curves in independent samples: Psychologische Beitrage Vol 22(4) 1980, 581-591.
  • Kumar, B. (1973). A weighted sign test of significance for the ordinal and the ordered-metric levels of measurement: Dissertation Abstracts International.
  • Land, K. C., Nagin, D. S., & McCall, P. L. (2001). Discrete-time hazard regression models with hidden heterogeneity: The semiparametric mixed Poisson regression approach: Sociological Methods & Research Vol 29(3) Feb 2001, 342-373.
  • Langhorne, J. E., Loney, J., & Hacker, M. (1978). A transformation program for normalizing data: Behavior Research Methods & Instrumentation Vol 10(5) Oct 1978, 745.
  • Lathrop, R. G., & Williams, J. E. (1989). The shape of the Inverse Scree test for cluster analysis: Educational and Psychological Measurement Vol 49(4) Win 1989, 827-834.
  • Lautsch, E., & von Eye, A. (1998). Zur Verwendung der Konfigurations-Clusteranalyse bei der Analyse von Anderungen in Me-sup-5wertprofilen: Zeitschrift fur Differentielle und Diagnostische Psychologie Vol 19(3) 1998, 200-203.
  • Leach, C. (1991). Nonparametric methods for complex data sets. Oxford, England; Florence, KY: British Psychological Society; Taylor & Frances/Routledge.
  • Lee, C.-H. (2007). A Monte Carlo study of two nonparametric statistics with comparisons of type I error rates and power. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Lee, Y.-S. (2007). A Comparison of Methods for Nonparametric Estimation of Item Characteristic Curves for Binary Items: Applied Psychological Measurement Vol 31(2) Mar 2007, 121-134.
  • Lehmann, E. L., & D'Abrera, H. J. (1975). Nonparametrics: Statistical methods based on ranks. Oxford, England: Holden-Day.
  • Lei, P.-W., Dunbar, S. B., & Kolen, M. J. (2004). A Comparison of Parametric and Nonparametric Approaches to Item Analysis for Multiple-Choice Tests: Educational and Psychological Measurement Vol 64(4) Aug 2004, 565-587.
  • Levin, J. R., & Wampold, B. E. (1999). Generalized single-case randomization tests: Flexible analyses for a variety of situations: School Psychology Quarterly Vol 14(1) Spr 1999, 59-93.
  • Levin, J. R., & Wampold, B. E. (1999). "Generalized single-case randomization tests: Flexible analyses for a variety of situations": Erratum: School Psychology Quarterly Vol 14(4) Win 1999, 447.
  • Levine, D. M. (1978). A Monte Carlo study of Kruskal's variance based measure on stress: Psychometrika Vol 43(3) Sep 1978, 307-315.
  • Levy, K. J. (1979). Nonparametric large-sample pairwise comparisons: Psychological Bulletin Vol 86(2) Mar 1979, 371-375.
  • Lewis, D., & Burke, C. J. (1950). Further discussion of the use and misuse of the chi-square test: Psychological Bulletin Vol 47(4) Jul 1950, 347-355.
  • Lezak, M. D., & Gray, D. K. (1984). Sampling problems and nonparametric solutions in clinical neuropsychological research: Journal of Clinical Neuropsychology Vol 6(1) Feb 1984, 101-109.
  • Li, T., & Vuong, Q. (1998). Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators: Journal of Multivariate Analysis Vol 65(2) May 1998, 139-165.
  • Lienert, G. A. (1980). On testing the significance of stanine-correlations: Psychologische Beitrage Vol 22(3) 1980, 449-453.
  • Lienert, G. A. (1984). Comments on Krauth, J: Distribution-free tests of homogeneity in paired samples: Psychologische Beitrage Vol 26(2) 1984, 309-317.
  • Lienert, G. A., & Krauth, J. (1973). The configuration frequency analysis: VI. Profile and symptom changes: Zeitschrift fur Klinische Psychologie und Psychotherapie Vol 21(2) 1973, 100-109.
  • Lienert, G. A., & Krauth, J. (1974). Configural frequency analysis: Zeitschrift fur Klinische Psychologie und Psychotherapie Vol 22(1) 1974, 3-17.
  • Lienert, G. A., & Krauth, J. (1974). Configuration frequency analysis: Zeitschrift fur Klinische Psychologie und Psychotherapie Vol 22(2) Jan 1974, 108-121.
  • Lienert, G. A., & Raatz, U. (1981). Item homogeneity defined by multivariate symmetry: Applied Psychological Measurement Vol 5(2) Spr 1981, 263-269.
  • Lienert, G. A., & zur Oeveste, H. (1987). Comparing sets of learning curves via two-sample configural frequency analysis: Psychologische Beitrage Vol 29(1) 1987, 12-30.
  • Lindman, H. R. (1972). Nonparametric statistics, Bayesian and classical: I. Sign test and Mann-Whitney U test. Oxford, England: Indiana U , No 72-6.
  • Liu, R. (1982). A statistical note on attrition studies: College Student Journal Vol 16(2) Sum 1982, 193-197.
  • Liu, X. (2007). A Bayesian nonparametric approach to testing essential unidimensionality in item response theory. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Lodhi, P. H. (1982). Kendall's zeta, Mosteller's chi square & Luce's choice axiom in relation to paired comparison method: Indian Psychological Review Vol 22(3) 1982, 1-8.
  • Lu, X., & Burke, M. D. (2005). Censored multiple regression by the method of average derivatives: Journal of Multivariate Analysis Vol 95(1) Jul 2005, 182-205.
  • Lunneborg, C. E. (1985). Estimating the correlation coefficient: The bootstrap approach: Psychological Bulletin Vol 98(1) Jul 1985, 209-215.
  • Lunneborg, C. E. (1986). Confidence intervals for a quantile contrast: Application of the bootstrap: Journal of Applied Psychology Vol 71(3) Aug 1986, 451-456.
  • Lunneborg, C. E., & Tousignant, J. P. (1985). Efron's bootstrap with application to the repeated measures design: Multivariate Behavioral Research Vol 20(2) Apr 1985, 161-178.
  • Lytton, J. M. (1975). A decision flow chart for nonparametric statistics: Dissertation Abstracts International.
  • MacDonald, P. (1999). Power, Type I, and Type III error rates of parametric and nonparametric statistical tests: Journal of Experimental Education Vol 67(4) Sum 1999, 367-379.
  • MacKay, G., Somerville, W., & Lundie, J. (1996). Reflections on goal attainment scaling (GAS): Cautionary notes and proposals for development: Educational Research Vol 38(2) Sum 1996, 161-172.
  • Macmillan, N. A., & Creelman, C. D. (1996). Triangles in ROC space: History and theory of "nonparametric" measures of sensitivity and response bias: Psychonomic Bulletin & Review Vol 3(2) Jun 1996, 164-170.
  • Mailhot, L. (1985). Some statistical aspects of right truncated distributions: Mathematiques et Sciences Humaines Vol 23(90) Sum 1985, 45-80.
  • Marascuilo, L. A. (1980). Introductory Nonparametric Statistics: PsycCRITIQUES Vol 25 (8), Aug, 1980.
  • Marascuilo, L. A., & Dagenais, F. (1982). Planned and post hoc comparisons for tests of homogeneity where the dependent variable is categorical and ordered: Educational and Psychological Measurement Vol 42(3) Fal 1982, 777-781.
  • Marascuilo, L. A., & McSweeney, M. (1967). Nonparametric Post Hoc Comparisons for Trend: Psychological Bulletin Vol 67(6) Jun 1967, 401-412.
  • Marascuilo, L. A., & Serlin, R. (1977). Interactions for dichotomous variables in repeated measures designs: Psychological Bulletin Vol 84(5) Sep 1977, 1002-1007.
  • Maris, G., & Maris, E. (2003). Testing the race model inequality: A nonparametric approach: Journal of Mathematical Psychology Vol 47(5-6) Oct-Dec 2003, 507-514.
  • Markowitsch, H. J., & Pritzel, M. (1977). Nonparametric statistics for the analysis of behavior-related single unit data: Physiology & Behavior Vol 18(4) Apr 1977, 717-719.
  • Marx, T. J. (1975). Statistical measurement of agreement for data in the nominal scale with applications to educational research and decisions: Dissertation Abstracts International.
  • Mathew, T., & Nordstrom, K. (1997). Wishart and Chi-Square Distributions Associated with Matrix Quadratic Forms: Journal of Multivariate Analysis Vol 61(1) Apr 1997, 129-143.
  • Maydeu-Olivares, A. (2005). Further Empirical Results on Parametric Versus Non-Parametric IRT Modeling of Likert-Type Personality Data: Multivariate Behavioral Research Vol 40(2) Apr 2005, 261-279.
  • McCall, R. B., & Appelbaum, M. I. (1973). Bias in the analysis of repeated-measures designs: Some alternative approaches: Child Development Vol 44(3) Sep 1973, 401-415.
  • McLeod, J. T. (1998). Nonparametric regression as a general statistical modeling methodology: A Monte Carlo investigation of factors influencing statistical power and robust performance in the presence of moderator variables. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • McSweeney, M., & Katz, B. M. (1978). Nonparametric statistics: Use and nonuse: Perceptual and Motor Skills Vol 46(3, Pt 2) Jun 1978, 1023-1032.
  • Meddis, R. (1980). Unified analysis of variance by ranks: British Journal of Mathematical and Statistical Psychology Vol 33(1) May 1980, 84-98.
  • Meijer, R. R. (1996). The influence of the presence of deviant item score patterns on the power of a person-fit statistic: Applied Psychological Measurement Vol 20(2) Jun 1996, 141-154.
  • Meijer, R. R., & Sijtsma, K. (1995). Detection of aberrant item score patterns: A review of recent developments: Applied Measurement in Education Vol 8(3) 1995, 261-272.
  • Meyer, J. P., Huynh, H., & Seaman, M. A. (2004). Exact Small-Sample Differential Item Functioning Methods for Polytomous Items With Illustration Based on an Attitude Survey: Journal of Educational Measurement Vol 41(4) Win 2004, 331-344.
  • Mielke, P. M., & Berry, K. J. (1983). Asymptotic clarifications, generalizations, and concerns regarding an extended class of matched pairs tests based on powers of ranks: Psychometrika Vol 48(3) Sep 1983, 483-485.
  • Mielke, P. W., & Berry, K. J. (1996). An exact solution to an occupancy problem: A useful alternative to Cochran's Q test: Perceptual and Motor Skills Vol 82(1) Feb 1996, 91-95.
  • Millsap, R. E., & Meredith, W. (1994). Statistical evidence in salary discrimination studies: Nonparametric inferential conditions: Multivariate Behavioral Research Vol 29(4) 1994, 339-364.
  • Mojirsheibani, M., & Montazeri, Z. (2007). On nonparametric classification with missing covariates: Journal of Multivariate Analysis Vol 98(5) May 2007, 1051-1071.
  • Mokken, R. J., & Lewis, C. (1982). A nonparameteric approach to the analysis of dichotomous item responses: Applied Psychological Measurement Vol 6(4) Fal 1982, 417-430.
  • Mokken, R. J., Lewis, C., & Sijtsma, K. (1986). Rejoinder to "The Mokken scale: A critical discussion." Applied Psychological Measurement Vol 10(3) Sep 1986, 279-285.
  • Moorer, P., & Suurmeijer, T. P. B. M. (1993). Unidimensionality and cumulativeness of the Loneliness Scale using Mokken Scale Analysis for polychotomous items: Psychological Reports Vol 73(3, Pt 2) Dec 1993, 1324-1326.
  • Moral, I., & M. Rodriguez Poo, J. (2002). Introduction to nonparametric regression estimation methods: Metodologia de las Ciencias del Comportamiento Vol 4(2) 2002, 223-253.
  • Morley, S., & Adams, M. (1989). Some simple statistical tests for exploring single-case time-series data: British Journal of Clinical Psychology Vol 28(1) Feb 1989, 1-18.
  • Mottonen, J., Husler, J., & Oja, H. (2003). Multivariate nonparametric tests in a randomized complete block design: Journal of Multivariate Analysis Vol 85(1) Apr 2003, 106-129.
  • Mroch, A. A., & Bolt, D. M. (2006). A Simulation Comparison of Parametric and Nonparametric Dimensionality Detection Procedures: Applied Measurement in Education Vol 19(1) 2006, 67-91.
  • Murray, J. F., Hughes, G. F., & Kreutz-Delgado, K. (2006). Machine learning methods for predicting failures in hard drives: A multiple-instance application: Journal of Machine Learning Research Vol 6 Dec 2006, 783-816.
  • Myers, J. L., DiCecco, J. V., White, J. B., & Borden, V. M. (1982). Repeated measurements of dichotomous variables: Q and F tests: Psychological Bulletin Vol 92(2) Sep 1982, 517-525.
  • Nandakumar, R. (1993). Assessing essential unidimensionality of real data: Applied Psychological Measurement Vol 17(1) Mar 1993, 29-38.
  • Nandakumar, R., & Stout, W. F. (1993). Refinements of Stout's procedure for assessing latent trait unidimensionality: Journal of Educational Statistics Vol 18(1) Spr 1993, 41-68.
  • Nandakumar, R., Yu, F., Li, H.-H., & Stout, W. (1998). Assessing unidimensionality of polytomous data: Applied Psychological Measurement Vol 22(2) Jun 1998, 99-115.
  • Nelson, P. L., & Toothaker, L. E. (1975). An empirical study of Jonckheere's non-parametric test of ordered alternatives: British Journal of Mathematical and Statistical Psychology Vol 28(2) Nov 1975, 167-176.
  • Neuhauser, M. (2002). Two-sample tests when variances are unequal: Animal Behaviour Vol 63(4) Apr 2002, 823-825.
  • Nevel'Skii, P. B. (1964). The application of non-parametric tests of significance: Voprosy Psychologii No 6 1964, 51-55.
  • No authorship, i. (1983). Review of Statistical Tables for the Social, Biological and Physical Sciences: PsycCRITIQUES Vol 28 (1), Jan, 1983.
  • Noether, G. E. (1985). Elementary estimates: An introduction to nonparametrics: Journal of Educational Statistics Vol 10(3) Fal 1985, 211-221.
  • Nygren, T. E. (1985). An examination of conditional violations of axioms for additive conjoint measurement: Applied Psychological Measurement Vol 9(3) Sep 1985, 249-264.
  • O'Brien, R. G. (1978). Robust techniques for testing heterogeneity of variance effects in factorial designs: Psychometrika Vol 43(3) Sep 1978, 327-342.
  • Okumura, H., & Naito, K. (2006). Non-parametric kernel regression for multinomial data: Journal of Multivariate Analysis Vol 97(9) Oct 2006, 2009-2022.
  • Oliver, L. M. (2004). Comprehensive Statistical Reference in a Single Volume? : PsycCRITIQUES Vol 49 (Suppl 9), 2004.
  • Padmanabhan, A. R. (1977). A comparison of the efficiencies of the c-sample normal scores and the Kruskal-Wallis tests in the case of grouped data: British Journal of Mathematical and Statistical Psychology Vol 30(2) Nov 1977, 222-226.
  • Palmer, A., Losilla, J. M., Vives, J., & Jimenez, R. (2007). Overdispersion in the Poisson regression model: A comparative simulation study: Methodology: European Journal of Research Methods for the Behavioral and Social Sciences Vol 3(3) 2007, 89-99.
  • Panning, W. H. (1982). Fitting blockmodels to data: Social Networks Vol 4(1) Mar 1982, 81-101.
  • Park, T.-H. (1997). A class of nonparametric tests for the generalized Behrens-Fisher problem. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Pascale, P. J. (1993). Page: A PASCAL program for the nonparametric test for ordered alternatives: Educational and Psychological Measurement Vol 53(1) Spr 1993, 99-101.
  • Pascale, P. J. (1993). Program Page: Using SPSS-X to generate the L statistic for the Page test of ordered alternatives: Educational and Psychological Measurement Vol 53(1) Spr 1993, 95-97.
  • Penfield, D. A. (1978). The two-sample normal scores test for scale: Educational and Psychological Measurement Vol 38(3) Fal 1978, 657-663.
  • Penfield, D. A. (1994). Choosing a two-sample location test: Journal of Experimental Education Vol 62(4) Sum 1994, 343-360.
  • Penfield, D. A., & Koffler, S. L. (1978). A comparison of some K-sample nonparametric tests for scale: Journal of Experimental Education Vol 47(2) Win 1978-1979, 126-130.
  • Penfield, D. A., & Koffler, S. L. (1986). A nonparametric K-sample test for equality of slopes: Educational and Psychological Measurement Vol 46(3) Fal 1986, 537-542.
  • Penfield, D. A., & Sachdeva, D. (1976). The absolute normal scores test for symmetry: Journal of Experimental Education Vol 45(2) Win 1976, 22-26.
  • Pensky, M. (1999). Nonparametric Empirical Bayes Estimation of the Matrix Parameter of the Wishart Distribution: Journal of Multivariate Analysis Vol 69(2) May 1999, 242-260.
  • Pesarin, F. (1990). On a nonparametric combination method for dependent permutation tests with applications: Psychotherapy and Psychosomatics Vol 54(2-3) 1990, 172-179.
  • Petersen, M. A. (2005). Review of Introduction to Nonparametric Item Response Theory: Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care & Rehabilitation Vol 14(4) May 2005, 1201-1202.
  • Pohl, N. F., & Bruno, A. V. (1976). TGDA: Nonparametric discriminant analysis: Educational and Psychological Measurement Vol 36(3) Fal 1976, 737-740.
  • Polonik, W., & Wang, Z. (2005). Estimation of regression contour clusters-an application of the excess mass approach to regression: Journal of Multivariate Analysis Vol 94(2) Jun 2005, 227-249.
  • Ponocny, I. (2001). Nonparametric goodness-of-fit tests for the Rasch model: Psychometrika Vol 66(3) Sep 2001, 437-459.
  • Ponsoda, V. (1981). Some programs for statistics and for visual attention: Revista de Psicologia General y Aplicada Vol 36(5) 1981, 819-823.
  • Posch, M. A. (1997). Comparative properties of nonparametric statistics for the analysis of the 2 x c layout for ordinal categorical data. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Post, W. J., & Snijders, T. A. B. (1993). Nonparametric unfolding models for dichotomous data: Methodika Vol 7(1) 1993, 130-156.
  • Rae, G. (1985). Quade's nonparametric analysis of covariance of matching: Behavior Research Methods, Instruments & Computers Vol 17(3) Jun 1985, 421-422.
  • Ramsay, J. O. (1995). A similarity-based smoothing approach to nondimensional item analysis: Psychometrika Vol 60(3) Sep 1995, 323-339.
  • Ramsay, J. O., Heckman, N., & Silverman, B. W. (1997). Spline smoothing with model-based penalties: Behavior Research Methods, Instruments & Computers Vol 29(1) Feb 1997, 99-106.
  • Ramsey, P. H. (1982). Empirical power of procedures for comparing two groups on p variables: Journal of Educational Statistics Vol 7(2) Sum 1982, 139-156.
  • Rasch, D., & Guiard, V. (2004). The robustness of parametric statistical methods: Psychology Science Vol 46(2) 2004, 175-208.
  • Raslear, T. G., Shurtleff, D., & Simmons, L. (1992). Loudness bisection and masking in the rat (Rattus norvegicus): Journal of Comparative Psychology Vol 106(4) Dec 1992, 374-382.
  • Rasmussen, J. L. (1986). An evaluation of parametric and non-parametric tests on modified and non-modified data: British Journal of Mathematical and Statistical Psychology Vol 39(2) Nov 1986, 213-220.
  • Rasmussen, J. L. (1987). Parametric and bootstrap approaches to repeated measures designs: Behavior Research Methods, Instruments & Computers Vol 19(4) Aug 1987, 357-360.
  • Rasmussen, J. L. (1988). "Bootstrap confidence intervals: Good or bad": Comments on Efron (1988) and Strube (1988) and further evaluation: Psychological Bulletin Vol 104(2) Sep 1988, 297-299.
  • Rasmussen, J. L. (1989). Parametric and non-parametric analysis of groups by trials design under variance-covariance inhomogeneity: British Journal of Mathematical and Statistical Psychology Vol 42(1) May 1989, 91-102.
  • Rasmussen, J. L., Heumann, K. A., Heumann, M. T., & Botzum, M. (1989). Univariate and multivariate groups by trials analysis under violation of variance-covariance and normality assumptions: Multivariate Behavioral Research Vol 24(1) Jan 1989, 93-105.
  • Regal, R. R., & Larntz, K. (1978). Likelihood methods for testing group problem solving models with censored data: Psychometrika Vol 43(3) Sep 1978, 353-366.
  • Rivas, T., Bersabe, R., & Berrocal, C. (2005). Application of the Double Monotonicity Model to Polytomous Items: Scalability of the Beck Depression Items on Subjects with Eating Disorders: European Journal of Psychological Assessment Vol 21(1) 2005, 1-10.
  • Roberge, J. J., & Roberge, J. (1977). A generalized nonparametric ANOVA program (Version 2): Behavior Research Methods & Instrumentation Vol 9(1) Feb 1977, 28.
  • Rodriguez-Campos, M. C. (1999). On Confidence Intervals in Nonparametric Binary Regression via Edgeworth Expansions: Journal of Multivariate Analysis Vol 69(2) May 1999, 218-241.
  • Rojo, J., & Ghebremichael, M. (2006). Estimation of two ordered bivariate mean residual life functions: Journal of Multivariate Analysis Vol 97(2) Feb 2006, 431-454.
  • Roskam, E. E., Van den Wollenberg, A. L., & Jansen, P. G. (1986). The Mokken scale: A critical discussion: Applied Psychological Measurement Vol 10(3) Sep 1986, 265-277.
  • Rossi, N., Wang, X., & Ramsay, J. O. (2002). Nonparametric item response function estimates with the EM algorithm: Journal of Educational and Behavioral Statistics Vol 27(3) Fal 2002, 291-317.
  • Rothstein, S. M., Bell, W. D., Patrick, J. A., & Miller, H. (1981). A jackknife test of homogeneity of variance with paired replicates data: Psychometrika Vol 46(1) Mar 1981, 35-40.
  • Rouanet, H., & Lepine, D. (1974). The conflict between robustness and power of a test for differences between independent means: Mathe1matiques et Sciences Humaines No 47 1974, 61-71.
  • Royeen, C. B. (1986). An exploration of parametric versus nonparametric statistics in occupational therapy clinical research: Dissertation Abstracts International.
  • Royeen, C. B., & Seaver, W. L. (1986). Promise in nonparametrics: American Journal of Occupational Therapy Vol 40(3) Mar 1986, 191-193.
  • Rust, R. T., & Bornman, E. O. (1982). Distribution-free methods of approximating nonlinear marketing relationships: Journal of Marketing Research Vol 19(3) Aug 1982, 372-374.
  • Sachs, J., Law, Y. k., & Chan, C. K. K. (2003). A nonparametric item analysis of a selected item subset of the Learning Process Questionnaire: British Journal of Educational Psychology Vol 73(3) Sep 2003, 395-423.
  • Samejima, F. (1994). Nonparametric estimation of the plausibility functions of the distractors of vocabulary test items: Applied Psychological Measurement Vol 18(1) Mar 1994, 35-51.
  • Samejima, F. (1998). Efficient nonparametric approaches for estimating the operating characteristics of discrete item responses: Psychometrika Vol 63(2) Jun 1998, 111-130.
  • Sawilowsky, S. S. (1990). Nonparametric tests of interaction in experimental design. Review of Educational Research, 60, 91-126.
  • Sawilowsky, S. S. (1993). Comments on using alternatives to normal theory statistics in social and behavioural science: Canadian Psychology/Psychologie Canadienne Vol 34(4) Oct 1993, 432-439.
  • Sawilowksy, S. S. (1998). Comments on using robust statistics in social and behavioral science. British Journal of Mathematical and Statistical Psychology, 51, 49-52.
  • Sawilowsky, S. (2000) Review of the rank transform in designed experiments. Perceptual and Motor Skills, 90, 489-497.
  • Sawilowsky, S. (2002). A quick distribution-free test for trend that contributes evidence of construct validity. Measurement and Evaluation in Counseling and Development, 35, 78-88.
  • Sawilowsky, S. (2005). Misconceptions leading to choosing the t test over the Wilcoxon Mann-Whitney U test for shift in location parameter. Journal of Modern Applied Statistical Methods, 4(2), 598-600.
  • Sawilowsky, S., Blair, R. C., and Higgins, J. J. (1989). An investigation of the type I error and power properties of the rank transform procedure in factorial ANOVA. Journal of Educational Statistics, 14, 255-267.
  • Sawilowsky, S. S., & Brown, M. T. (1991). On using the t test on ranks as an alternative to the Wilcoxon Test: Perceptual and Motor Skills Vol 72(3, Pt 1) Jun 1991, 860-862.
  • Schaal, S., Atkeson, C. G., & Vijayakumar, S. (2002). Scalable techniques from nonparametric statistics for real time robot learning: Applied Intelligence Vol 17(1) Jul-Aug 2002, 49-60.
  • Scheiblechner, H. (2003). Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP): Psychometrika Vol 68(1) Mar 2003, 79-96.
  • Schmid, F., & Schmidt, R. (2007). Multivariate conditional versions of Spearman's rho and related measures of tail dependence: Journal of Multivariate Analysis Vol 98(6) Jul 2007, 1123-1140.
  • Schulman, R. S. (1976). Correlation and prediction in ordinal test theory: Psychometrika Vol 41(3) Sep 1976, 329-340.
  • Schultz, J. V., & Hubert, L. (1976). A nonparametric test for the correspondence between two proximity matrices: Journal of Educational Statistics Vol 1(1) Spr 1976, 59-67.
  • Seaman, S. L., Algina, J., & Olejnik, S. F. (1985). Type I error probabilities and power of the rank and parametric ANCOVA procedures: Journal of Educational Statistics Vol 10(4) Win 1985, 345-367.
  • Seaman, S. L., & Young, D. M. (1990). A non-parametric variable selection algorithm for allocatory linear discriminant analysis: Educational and Psychological Measurement Vol 50(4) Win 1990, 837-841.
  • Seidenstucker, E. (1977). Therapy, therapist, and client as tested using the Latin square: Zeitschrift fur Klinische Psychologie und Psychotherapie Vol 25(3) 1977, 196-202.
  • Seraphine, A. E., Algina, J. J., & Miller, M. D. (2001). The assessment of unidimensionality of normal and lognormal data: A look at two nonparametric procedures: Journal of Applied Measurement Vol 2(1) 2001, 27-47.
  • Serfling, R. (2002). Generalized quantile processes based on multivariate depth functions, with applications in nonparametric multivariate analysis: Journal of Multivariate Analysis Vol 83(1) Oct 2002, 232-247.
  • Serlin, R. C. (1976). A computer program for the analysis of categorical data: Educational and Psychological Measurement Vol 36(3) Fal 1976, 743-746.
  • Serlin, R. C., Carr, J., & Marascuilo, L. A. (1982). A measure of association for selected nonparametric procedures: Psychological Bulletin Vol 92(3) Nov 1982, 786-790.
  • Serlin, R. C., & Harwell, M. R. (2004). More Powerful Tests of Predictor Subsets in Regression Analysis Under Nonnormality: Psychological Methods Vol 9(4) Dec 2004, 492-509.
  • Severance, N. (1998). A unique place of its own: PsycCRITIQUES Vol 43 (12), Dec, 1998.
  • Shaffer, J. P. (1977). Reorganization of variables in analysis of variance and multidimensional contingency tables: Psychological Bulletin Vol 84(2) Mar 1977, 220-228.
  • Sheskin, D. J. (2004). Handbook of parametric and nonparametric statistical procedures (3rd ed.). Boca Raton, FL: Chapman & Hall/CRC.
  • Sheu, C.-F., & O'Curry, S. (1996). Implementation of nonparametric multivariate statistics with S: Behavior Research Methods, Instruments & Computers Vol 28(2) May 1996, 315-318.
  • Shulkin, B., & Sawilowsky, S. (2009). Estimating a population median with a small sample. Model Assisted Statistics and Applications, 4(2), 143-155.
  • Siegel, S., & Castellan, N. J., Jr. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New York, NY, England: Mcgraw-Hill Book Company.
  • Sijtsma, K. (1984). Useful nonparametric scaling: A reply to Jansen: Psychologische Beitrage Vol 26(3) 1984, 423-437.
  • Sijtsma, K. (2001). Developments in measurement of persons and items by means of item response models: Behaviormetrika Vol 28(1) Jan 2001, 65-94.
  • Sijtsma, K., & Hemker, B. T. (1998). Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models: Psychometrika Vol 63(2) Jun 1998, 183-200.
  • Sijtsma, K., & Junker, B. W. (1996). A survey of theory and methods of invariant item ordering: British Journal of Mathematical and Statistical Psychology Vol 49(1) May 1996, 79-105.
  • Sijtsma, K., & Junker, B. W. (2006). Item Response Theory: Past Performance, Present Developments, and Future Expectations: Behaviormetrika Vol 33(1) Jan 2006, 75-102.
  • Sijtsma, K., & Meijer, R. R. (1992). A method for investigating the intersection of item response functions in Mokken's nonparametric IRT model: Applied Psychological Measurement Vol 16(2) Jun 1992, 149-157.
  • Silverstein, A. B. (1974). Relations between analysis of variance and its nonparametric analogs: Psychological Reports Vol 34(1) Feb 1974, 331-333.
  • Silverstein, A. B. (1975). Comparing all treatment means with the grand mean: II. The case of ranked data: Perceptual and Motor Skills Vol 40(1) Feb 1975, 221-222.
  • Silverstein, A. B. (1978). Critical values for nonparametric multiple comparisons: Psychological Reports Vol 43(1) Aug 1978, 44-46.
  • Singer, B. (1979). Distribution-free methods for non-parametric problems: A classified and selected bibliography: British Journal of Mathematical and Statistical Psychology Vol 32(1) May 1979, 1-60.
  • Singh, S. N., & Karney, D. F. (1987). A simple algorithm to obtain nonparametric response bias estimates using Hodos's method: Behavior Research Methods, Instruments & Computers Vol 19(5) Oct 1987, 460-461.
  • Smith, E. C., Daniel, W. W., & Schott, B. (1978). Nonparametric regression analysis: A program package for use on a computer terminal: Behavior Research Methods & Instrumentation Vol 10(3) Jun 1978, 435-436.
  • Sorbom, D. (1978). An alternative to the methodology for analysis of covariance: Psychometrika Vol 43(3) Sep 1978, 381-396.
  • Sprott, D. A. (1978). Robustness and non-parametric procedures are not the only or the safe alternatives to normality: Canadian Journal of Psychology/Revue Canadienne de Psychologie Vol 32(3) Sep 1978, 180-185.
  • Stamm, C. L., & Safrit, M. J. (1977). Comparison of two nonparametric methods for estimating the reliability of motor performance tests: Research Quarterly Vol 48(1) Mar 1977, 169-176.
  • Stavig, G. R., & Acock, A. C. (1980). Coefficients of association analogous to Pearson's r for nonparametric statistics: Educational and Psychological Measurement Vol 40(3) Fal 1980, 679-685.
  • Stemmler, M., & Bingham, C. R. (2003). Log-linear modeling and two-sample CFA in the search of discrimination types: Psychology Science Vol 45(2) 2003, 421-429.
  • Stout, W. (1987). A nonparametric approach for assessing latent trait unidimensionality: Psychometrika Vol 52(4) Dec 1987, 589-617.
  • Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment: Applied Psychological Measurement Vol 20(4) Dec 1996, 331-354.
  • Strube, M. J. (1988). Bootstrap Type I error rates for the correlation coefficient: An examination of alternate procedures: Psychological Bulletin Vol 104(2) Sep 1988, 290-292.
  • Swanson, D. B., Clauser, B. E., Case, S. M., Nungester, R. J., & Featherman, C. (2002). Analysis of differential item functioning (DIF) using hierarchical logistic regression models: Journal of Educational and Behavioral Statistics Vol 27(1) Spr 2002, 53-76.
  • Takane, Y. (1978). A maximum likelihood method for nonmetric multidimensional scaling: I. The case in which all empirical pairwise orderings are independent: Evaluations: Japanese Psychological Research Vol 20(3) Sep 1978, 105-114.
  • Takane, Y. (1981). MDSORT: A special-purpose multidimensional scaling program for sorting data: Behavior Research Methods & Instrumentation Vol 13(5) Oct 1981, 698.
  • Takane, Y., & Carroll, J. D. (1981). Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities: Psychometrika Vol 46(4) Dec 1981, 389-405.
  • Tanaka, J. S. (1987). "How big is big enough?": Sample size and goodness of fit in structural equation models with latent variables: Child Development Vol 58(1) Feb 1987, 134-146.
  • Taniguchi, M., Puri, M. L., & Kondo, M. (1996). Nonparametric Approach for Non-Gaussian Vector Stationary Processes: Journal of Multivariate Analysis Vol 56(2) Feb 1996, 259-283.
  • TenVergert, E., Kingma, J., & Taerum, T. (1989). Psychology of computer use: VIII. Utilizing a nonparametric item response model to develop unidimensional scales: MOKSCAL: Perceptual and Motor Skills Vol 68(3, Pt 1) Jun 1989, 987-1000.
  • Thacker, C. (2004). Review of How to Design and Report Experiments: Psychology Learning & Teaching Vol 3(2) Mar 2004, 137-138.
  • Toothaker, L. E., & Newman, D. A. (1994). Nonparametric competitors to the two-way ANOVA: Journal of Educational and Behavioral Statistics Vol 19(3) Fal 1994, 237-273.
  • Trippi, R. R., & Settle, R. B. (1976). A nonparametric coefficient of internal consistency: Multivariate Behavioral Research Vol 11(4) Oct 1976, 419-424.
  • Tsangari, H., & Akritas, M. G. (2004). Nonparametric ANCOVA with two and three covariates: Journal of Multivariate Analysis Vol 88(2) Feb 2004, 298-319.
  • Turpin, W. (1976). Use of the Fisher Exact Test on single-subject data: Research & the Retarded Vol 3(3) 1976, 89-97.
  • Utzet, F., & Sanchez, A. (1992). Some applications of the bootstrap to survival analysis: Anuario de Psicologia Vol 55(4) Dec 1992, 155-167.
  • Vallejo, G., Arnau, J., Bono, R., Cuesta, M., Fernandez, P., & Herrero, J. (2002). Analysis of trans-sectional short time-series designs by means of parametric and nonparametric procedures: Metodologia de las Ciencias del Comportamiento Vol 4(2) 2002, 301-323.
  • van Abswoude, A. A. H., van der Ark, L. A., & Sijtsma, K. (2004). A comparative study of test data dimensionality assessment procedures under nonparametric IRT models: Applied Psychological Measurement Vol 28(1) Jan 2004, 3-24.
  • Van Bergem, P., Ditrichs, R., & Simon, S. (1986). A BASIC program for nonparametric analyses of proximity matrices: Behavior Research Methods, Instruments & Computers Vol 18(4) Aug 1986, 407-408.
  • Vanhuele, M., Dekimpe, M. G., Sharma, S., & Morrison, D. G. (1995). Probability models for duration: The data don't tell the whole story: Organizational Behavior and Human Decision Processes Vol 62(1) Apr 1995, 1-13.
  • Vegelius, J. (1975). SIEGEL, a FORTRAN IV program for nonparametrical methods: Educational and Psychological Measurement Vol 35(3) Fal 1975, 713-715.
  • Velicer, W. F., Peacock, A. C., & Jackson, D. N. (1982). A comparison of component and factor patterns: A Monte Carlo approach: Multivariate Behavioral Research Vol 17(3) Jul 1982, 371-388.
  • Verguts, T., & Storms, G. (2003). Decision-bound theory and the influence of familiarity: Psychonomic Bulletin & Review Vol 10(1) Mar 2003, 141-148.
  • von Collani, G. (1983). NONPARAM: A BASIC program package for nonparametric procedures: Behavior Research Methods & Instrumentation Vol 15(1) Feb 1983, 104.
  • Von Eye, A. (2004). Robustness is parameter-specific a comment on Rasch and Guiard's robustness study: Psychology Science Vol 46(4) 2004, 544-548.
  • von Eye, A., Neubauer, A., & Stemmler, M. (1996). The Median Quartiles Test revisited: Studia Psychologica Vol 38(1-2) 1996, 79-84.
  • Wagner, E. E. (1976). The Friedman two-way analysis of variance as a test for ranking error: Educational and Psychological Measurement Vol 36(3) Fal 1976, 615-617.
  • Wampold, B. E., & Margolin, G. (1982). Nonparametric strategies to test the independence of behavioral states in sequential data: Psychological Bulletin Vol 92(3) Nov 1982, 755-765.
  • Wang, Q. (2006). Nonparametric regression function estimation with surrogate data and validation sampling: Journal of Multivariate Analysis Vol 97(5) May 2006, 1142-1161.
  • Wastell, D. G., & Nimmo-Smith, I. (1986). The polarity coincidence correlator: Significance testing and other issues: Bulletin of the Psychonomic Society Vol 24(3) May 1986, 211-212.
  • White, A. P., Still, A. W., & Harris, P. W. (1978). RANOVA: A FORTRAN IV program for four-way Monte Carlo analysis of variance: Behavior Research Methods & Instrumentation Vol 10(5) Oct 1978, 732.
  • Wiedermann, W. T., & Alexandrowicz, R. W. (2007). A plea for more general tests than those for location only: Further considerations on Rasch & Guiard's 'The robustness of parametric statistical methods': Psychology Science Vol 49(1) 2007, 2-12.
  • Wike, E. L. (1974). Some nonparametric multiple-comparison tests: Perceptual and Motor Skills Vol 38(3, Pt 2) Jun 1974, 1055-1058.
  • Wike, E. L., & Church, J. D. (1977). Further comments on nonparametric multiple-comparison tests: Perceptual and Motor Skills Vol 45(3, Pt 1) Dec 1977, 917-918.
  • Wike, E. L., & Church, J. D. (1978). A Monte Carlo investigation of four nonparametric multiple-comparison tests for k independent groups: Bulletin of the Psychonomic Society Vol 11(1) Jan 1978, 25-28.
  • Wike, E. L., & Church, J. D. (1980). Monte Carlo studies of Levy's "nonparametric large-sample pairwise comparisons." Psychological Bulletin Vol 88(3) Nov 1980, 607-613.
  • Wilcox, R. R. (1991). Non-parametric analysis of covariance based on predicted medians: British Journal of Mathematical and Statistical Psychology Vol 44(1) May 1991, 221-230.
  • Wilcox, R. R. (2004). A multivariate projection-type analogue of the Wilcoxon-Mann-Whitney test: British Journal of Mathematical and Statistical Psychology Vol 57(2) Nov 2004, 205-213.
  • Wilcox, R. R. (2005). An Approach to ANCOVA that Allows Multiple Covariates, Nonlinearity, and Heteroscedasticity: Educational and Psychological Measurement Vol 65(3) Jun 2005, 442-450.
  • Wilcox, R. R. (2006). Testing the Hypothesis of a Homoscedastic Error Term in Simple, Nonparametric Regression: Educational and Psychological Measurement Vol 66(1) Feb 2006, 85-92.
  • Williams, R. H. (1984). Addendum to Buckalew's "Nonparametrics and psychology: A revitalized alliance." Perceptual and Motor Skills Vol 59(1) Aug 1984, 77-78.
  • Wilson, K. V. (1956). A distribution-free test of analysis of variance hypotheses: Psychological Bulletin Vol 53(1) Jan 1956, 96-101.
  • Winter, R. B. (1974). Nonparametric density estimation and statistical discrimination: Psychological Bulletin Vol 81(6) Jun 1974, 371-379.
  • Wittink, D. R., & Cattin, P. (1981). Alternative estimation methods for conjoint analysis: A Monte Carlo study: Journal of Marketing Research Vol 18(1) Feb 1981, 101-106.
  • Wood, D. L., & Wood, D. (1984). TINT: A Microsoft BASIC t integration program: Behavior Research Methods, Instruments & Computers Vol 16(5) Oct 1984, 479-480.
  • Wyatt, M. T. (1995). An empirical examination of selected difference analysis techniques for the evaluation of healthcare quality assessment data. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Xia, Y., & Li, W. K. (2002). Asymptotic behavior of bandwidth selected by the cross-validation method for local polynomial fitting: Journal of Multivariate Analysis Vol 83(2) Nov 2002, 265-287.
  • Xu, J.-L. (1994). Nonparametric estimation of a distribution function in biased sampling models. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Xu, X., & Douglas, J. (2006). Computerized adaptive testing under nonparametric IRT models: Psychometrika Vol 71(1) Mar 2006, 121-137.
  • Yaffee, R. A. (1996). A basic guide to statistical research and discovery: Planning and selecting statistical analyses. Thousand Oaks, CA: Sage Publications, Inc.
  • Yang, C.-C. (1999). Graphical diagnostic methods for regression models: A Monte Carlo study with application of Taiwanese kindergarten educators' work motivation. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Yoshizawa, C. N. (1985). Some tests of symmetry: Dissertation Abstracts International.
  • Young, F. W., & Null, C. H. (1978). Multidimensional scaling of nominal data: The recovery of metric information with ALSCAL: Psychometrika Vol 43(3) Sep 1978, 367-379.
  • Young, F. W., Takane, Y., & Lewyckyj, R. (1978). Three notes on ALSCAL: Psychometrika Vol 43(3) Sep 1978, 433-435.
  • Youngman, G. H. (1976). Calculation of Mood's dispersion test statistic using Mielke's adjustment for ties: A program for use on a computer terminal: Behavior Research Methods & Instrumentation Vol 8(5) Oct 1976, 469.
  • Zar, J. H. (1976). Watson's nonparametric two-sample test: Behavior Research Methods & Instrumentation Vol 8(6) Dec 1976, 513.
  • Zhang, Z., & Schoeps, N. (1997). On robust estimation of effect size under semiparametric models: Psychometrika Vol 62(2) Jun 1997, 201-214.
  • Zimmerman, D. W. (1993). Mimicking properties of nonparametric rank tests using scores that are not ranks: Journal of General Psychology Vol 120(4) Oct 1993, 509-516.
  • Zimmerman, D. W. (1993). A note on nonindependence and nonparametric tests: Perceptual and Motor Skills Vol 76(2) Apr 1993, 407-412.
  • Zimmerman, D. W. (1994). Note on the influence of distribution of shape on nonparametric tests: Perceptual and Motor Skills Vol 79(3, Pt 1) Dec 1994, 1160-1162.
  • Zimmerman, D. W. (1994). A note on the influence of outliers on Parametric and Nonparametric tests: Journal of General Psychology Vol 121(4) Oct 1994, 391-401.
  • Zimmerman, D. W. (1995). Increasing the power of the ANOVA F test for outlier-prone distributions by modified ranking methods: Journal of General Psychology Vol 122(1) Jan 1995, 83-94.
  • Zimmerman, D. W. (1996). An efficient alternative to the Wilcoxon signed-ranks test for paired nonnormal data: Journal of General Psychology Vol 123(1) Jan 1996, 29-40.
  • Zimmerman, D. W. (1998). Invalidation of parametric and nonparametric statistical tests by concurrent violation of two assumptions: Journal of Experimental Education Vol 67(1) Fal 1998, 55-68.
  • Zimmerman, D. W. (2000). Statistical significance levels of nonparametric tests biased by heterogeneous variances of treatment groups: Journal of General Psychology Vol 127(4) Oct 2000, 354-364.
  • Zimmerman, D. W. (2003). A warning about the large-sample Wilcoxon-Mann-Whitney test: Understanding Statistics Vol 2(4) Oct 2003, 267-280.
  • Zimmerman, D. W. (2004). Inflation of Type I Error Rates by Unequal Variances Associated with Parametric, Nonparametric, and Rank-Transformation Tests: Psicologica Vol 25(1) 2004, 103-133.
  • Zimmerman, D. W., & Zumbo, B. D. (1990). Effect of outliers on the relative power of parametric and nonparametric statistical tests: Perceptual and Motor Skills Vol 71(1) Aug 1990, 339-349.
  • Zumbo, B. D., & Zimmerman, D. W. (1993). Alternatives to classical statistical procedures: Introduction to the symposium: Canadian Psychology/Psychologie Canadienne Vol 34(4) Oct 1993, 381-383.
  • Zwick, R. (1985). Nonparametric one-way multivariate analysis of variance: A computational approach based on the Pillai-Bartlett trace: Psychological Bulletin Vol 97(1) Jan 1985, 148-152.
  • Zwick, R. (1986). Rank and normal scores alternatives to Hotelling's Tsuperscript 2: Multivariate Behavioral Research Vol 21(2) Apr 1986, 169-186.


Please copy and paste this prompt to other appropriate areas. Feel free to edit as necessary

Instructions_for_archiving_academic_and_professional_materials

Nonparametric statistics : Academic support materials

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki