Psychology Wiki
No edit summary
 
No edit summary
Line 1: Line 1:
 
{{BioPsy}}
 
{{BioPsy}}
  +
'''Neuroactive [[steroid]]s''' (or '''neurosteroids''') rapidly alter [[neuron]]al excitability through interaction with [[neurotransmitter]][[ligand-gated ion channel|-gated ion channel]]s.<ref name="pmid1347506">{{cite journal | author = Paul SM, Purdy RH | title = Neuroactive steroids | journal = FASEB J. | volume = 6 | issue = 6 | pages = 2311–22 | year = 1992 | pmid = 1347506 | doi = | issn = | url = http://www.fasebj.org/cgi/content/abstract/6/6/2311 | format = abstract }}</ref><ref name="pmid7729823">{{cite journal | author = Lan NC, Gee KW | title = Neuroactive steroid actions at the GABAA receptor | journal = Horm Behav | volume = 28 | issue = 4 | pages = 537–44 | year = 1994 | pmid = 7729823 | doi = 10.1006/hbeh.1994.1052 | issn = }}</ref> In addition, these steroids may also exert effects on [[gene expression]] via intracellular [[steroid hormone receptor]]s. Neurosteroids have a wide range of applications from [[sedation]] to treatment of [[epilepsy]] and [[traumatic brain injury]].<ref name="pmid17531324">{{cite journal | author = Morrow AL | title = Recent developments in the significance and therapeutic relevance of neuroactive steroids--Introduction to the special issue | journal = Pharmacol. Ther. | volume = 116 | issue = 1 | pages = 1–6 | year = 2007 | pmid = 17531324 | doi = 10.1016/j.pharmthera.2007.04.003 | issn = }}</ref><ref name="pmid15694225">{{cite journal | author = Dubrovsky BO | title = Steroids, neuroactive steroids and neurosteroids in psychopathology | journal = Prog. Neuropsychopharmacol. Biol. Psychiatry | volume = 29 | issue = 2 | pages = 169–92 | year = 2005 | pmid = 15694225 | doi = 10.1016/j.pnpbp.2004.11.001 | issn = }}</ref>
Apart from exerting effects on the [[genome]] via intracellular steroid [[Receptor (biochemistry)|receptors]], '''neuroactive [[steroid]]s''' (or '''neurosteroids''') rapidly alter [[neuron]]al excitability through interaction with [[neurotransmitter]]-gated [[ion channels]]. Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids. The 3alpha-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been surmised to enhance [[GABA]]-mediated chloride currents, whereas [[pregnenolone]] sulfate and [[dehydroepiandrosterone]] (DHEA) sulfate display functional antagonistic properties at [[GABA A receptor]]s.
 
   
 
Apart from exerting effects on the [[genome]] via intracellular steroid [[Receptor (biochemistry)|receptors]], '''neuroactive [[steroid]]s''' rapidly alter [[neuron]]al excitability through interaction with [[neurotransmitter]]-gated [[ion channels]]. Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids. The 3alpha-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been surmised to enhance [[GABA]]-mediated chloride currents, whereas [[pregnenolone]] sulfate and [[dehydroepiandrosterone]] (DHEA) sulfate display functional antagonistic properties at [[GABA A receptor]]s.
Neurosteroids are synthesized in the central and peripheral nervous system, especially in myelinating glial cells, from cholesterol or steroidal precursors imported from peripheral sources. They include 3 beta-hydroxy-delta 5-compounds, such as pregnenolone (PREG) and dehydroepiandrosterone (DHEA), their sulfates, and reduced metabolites such as the tetrahydroderivative of progesterone 3 alpha-hydroxy-5 alpha-pregnane-20-one (3 alpha,5 alpha-THPROG). These compounds can act as allosteric modulators of neurotransmitter receptors, such as GABA(A), NMDA, and sigma receptors. [[Progesterone]] (PROG) is also a neurosteroid, and a progesterone receptor (PROG-R) has been identified in peripheral and central glial cells.
 
  +
  +
  +
==Biosynthesis==
  +
Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids or gonadal steroids, especially testosterone. Neurosteroids are synthesized in the central and peripheral nervous system, especially in myelinating glial cells, from cholesterol or steroidal precursors imported from peripheral sources.<ref name="pmid16984997">{{cite journal | author = Agís-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A | title = Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 103 | issue = 39 | pages = 14602–7 | year = 2006 | pmid = 16984997 | doi = 10.1073/pnas.0606544103 | issn = }}</ref><ref name="pmid11750861">{{cite journal | author = Mellon SH, Griffin LD | title = Neurosteroids: biochemistry and clinical significance | journal = Trends Endocrinol. Metab. | volume = 13 | issue = 1 | pages = 35–43 | year = 2002 | pmid = 11750861 | doi = 10.1016/S1043-2760(01)00503-3 | issn = }}</ref> They include 3β-hydroxy-Δ5 derivatives, such as [[pregnenolone]] (PREG) and [[dehydroepiandrosterone]] (DHEA), their sulfates, and reduced metabolites such as the tetrahydroderivative of progesterone 3α-hydroxy-5α-pregnane-20-one (3α,5α-THPROG).
  +
  +
==Mechanism==
  +
These compounds can act as allosteric modulators of neurotransmitter receptors, such as [[GABAA receptor|GABA<sub>A</sub>]],<ref name="pmid2422758">{{cite journal | author = Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM | title = Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor | journal = Science | volume = 232 | issue = 4753 | pages = 1004–7 | year = 1986 | pmid = 2422758 | doi = 10.1126/science.2422758 | issn = }}</ref><ref name="pmid17531325">{{cite journal | author = Herd MB, Belelli D, Lambert JJ | title = Neurosteroid modulation of synaptic and extrasynaptic GABA<sub>A</sub> receptors | journal = Pharmacology & Therapeutics| volume = 116| issue = | pages = 20| year = 2007 | pmid = 17531325 | doi = 10.1016/j.pharmthera.2007.03.007 | issn = }}</ref><ref name="pmid17108970">{{cite journal | author = Hosie AM, Wilkins ME, da Silva HM, Smart TG | title = Endogenous neurosteroids regulate GABA<sub>A</sub> receptors through two discrete transmembrane sites | journal = Nature | volume = 444 | issue = 7118 | pages = 486–9 | year = 2006 | pmid = 17108970 | doi = 10.1038/nature05324 | issn = }}</ref><ref name="pmid2160838">{{cite journal | author = Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E | title = Neurosteroids act on recombinant human GABA<sub>A</sub> receptors | journal = Neuron | volume = 4 | issue = 5 | pages = 759–65 | year = 1990 | pmid = 2160838 | doi = 10.1016/0896-6273(90)90202-Q| issn = }}</ref> [[NMDA receptor|NMDA]],<ref name="pmid1654510">{{cite journal | author = Wu FS, Gibbs TT, Farb DH | title = Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor | journal = Mol. Pharmacol. | volume = 40 | issue = 3 | pages = 333–6 | year = 1991 | pmid = 1654510 | doi = | issn = | url = http://molpharm.aspetjournals.org/cgi/content/abstract/40/3/333 | format = abstract }}</ref> and [[sigma receptor]]s.<ref name="pmid9062676">{{cite journal | author = Maurice T, Junien JL, Privat A | title = Dehydroepiandrosterone sulfate attenuates dizocilpine-induced learning impairment in mice via sigma 1-receptors | journal = Behav. Brain Res. | volume = 83 | issue = 1-2 | pages = 159–64 | year = 1997 | pmid = 9062676 | doi = 10.1016/S0166-4328(97)86061-5| issn = }}</ref> [[Progesterone]] (PROG) is also a neurosteroid which activates [[progesterone receptor]]s expressed in peripheral and central glial cells.<ref name="pmid9238846">{{cite journal | author = [[Étienne-Émile Baulieu|Baulieu EE]] | title = Neurosteroids: of the nervous system, by the nervous system, for the nervous system | journal = Recent Prog. Horm. Res. | volume = 52 | issue = | pages = 1–32 | year = 1997 | pmid = 9238846 | doi = | issn = }}</ref><ref name="pmid8398145">{{cite journal | author = Rupprecht R, Reul JM, Trapp T, van Steensel B, Wetzel C, Damm K, Zieglgänsberger W, Holsboer F | title = Progesterone receptor-mediated effects of neuroactive steroids | journal = Neuron | volume = 11 | issue = 3 | pages = 523–30 | year = 1993 | pmid = 8398145 | doi = 10.1016/0896-6273(93)90156-L| issn = }}</ref><ref name="pmid10418983">{{cite journal | author = Jung-Testas I, Do Thi A, Koenig H, Désarnaud F, Shazand K, Schumacher M, Baulieu EE | title = Progesterone as a neurosteroid: synthesis and actions in rat glial cells | journal = J. Steroid Biochem. Mol. Biol. | volume = 69 | issue = 1-6 | pages = 97–107 | year = 1999 | pmid = 10418983 | doi = 10.1016/S0960-0760(98)00149-6| issn = }}</ref><ref name="pmid15959466">{{cite journal | author = Belelli D, Lambert JJ | title = Neurosteroids: endogenous regulators of the GABA<sub>A</sub> receptor | journal = Nat. Rev. Neurosci. | volume = 6 | issue = 7 | pages = 565–75 | year = 2005 | pmid = 15959466 | doi = 10.1038/nrn1703 | issn = }}</ref> The 3α-hydroxy ring A-reduced pregnane steroids [[allopregnanolone]] and [[tetrahydrodeoxycorticosterone]] have been surmised to enhance [[GABA]]-mediated chloride currents, whereas [[pregnenolone]] sulfate and [[dehydroepiandrosterone]] (DHEA) sulfate display functional antagonistic properties at GABA<sub>A</sub> receptors.
  +
  +
==Therapeutic application==
  +
Several synthetic neurosteroids have been used as [[sedative]]s for the purpose of [[general anaesthesia]] for carrying out surgical procedures. The best known of these are [[alphaxolone]], [[althesin|alphadolone]], [[hydroxydione]] and [[minaxolone]]. The first of these to be introduced was hydroxydione, which is the esterified 21-hydroxy derivative of 5β-pregnanedione. Hydroxydione proved to be a useful anaesthetic drug with a good safety profile, but was painful and irritating when injected probably due to poor water solubility. This led to the development of newer neuroactive steroids. The next drug from this family to be marketed was a mixture of alphaxolone and alphadolone, known as [[Althesin]]. This was withdrawn from human use due to rare but serious toxic reactions, but is still used in [[veterinary medicine]]. The next neurosteroid anaesthetic introduced into human medicine was the newer drug minaxolone, which is around three times more potent than althesin and retains the favourable safety profile, without the toxicity problems seen with althesin. However this drug was also ultimately withdrawn, not because of problems in clinical use, but because animal studies suggested potential carcinogenicity and since alternative agents were available it was felt that the possible risk outweighed the benefit of keeping the drug on the market.
  +
  +
[[Image:neuroactive steroids.png]]
  +
  +
More recently, another neurosteroid [[ganaxolone]] has been developed and is currently in clinical trials for the treatment of [[epilepsy]]. This drug has less [[sedative]] effects than the anaesthetic neurosteroids listed above, but is a potent [[anticonvulsant]] which may have some advantages over older anticonvulsant drugs, mainly less development of tolerance with extended use.
  +
  +
==Role in antidepressant action==
  +
Certain [[antidepressant]] drugs such as [[fluoxetine]] and [[fluvoxamine]] which were thought to act primarily as [[selective serotonin reuptake inhibitor]]s have also been found to increase the levels of certain neurosteroids.<ref name="pmid9501247">{{cite journal | author = Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A | title = Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 95 | issue = 6 | pages = 3239–44 | year = 1998 | pmid = 9501247 | doi = 10.1073/pnas.95.6.3239 | issn = }}</ref><ref name="pmid16432684">{{cite journal | author = Pinna G, Costa E, Guidotti A | title = Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake | journal = Psychopharmacology (Berl.) | volume = 186 | issue = 3 | pages = 362–72 | year = 2006 | pmid = 16432684 | doi = 10.1007/s00213-005-0213-2 | issn = }}</ref> Based on these studies, it has been proposed that increased levels of neurosteroids induced by fluoxetine or fluvoxamine may significantly contribute to or even be the predominate mechanism of action of these antidepressant drugs.
  +
  +
===Benzodiazepines and effect on neurosteroids===
  +
  +
[[Benzodiazepines]] may influence neurosteroid metabolism and [[progesterone]] levels which in turn may influence the functions of the [[brain]]. The [[pharmacological]] actions of benzodiazepines at the GABA<sub>A</sub> receptor are similar to those of [[neurosteroids]]. [[Neuroactive]] steroids are positive [[allosteric]] modulators of the GABA<sub>A</sub> receptor, enhancing [[GABA]] function. Many benzodiazepines ([[diazepam]], [[medazepam]], [[estazolam]], [[nitrazepam]] [[flunitrazepam]] and [[temazepam]]) potently inhibit the [[enzymes]] involved in the [[metabolism]] of neurosteroids. Long-term administration of benzodiazepines may influence the concentrations of [[endogenous]] neurosteroids, and thereby would modulate the emotional state. Factors which effects the ability of individual benzodiazepines to alter neurosteroid levels depend on the molecular make up of the individual benzodiazepine drug. Presence of a substituent at N1 position of the [[diazepine]] ring and/or the chloro or nitro group at position 7 of the [[benzene]] ring contribute to potent inhibition of the isoenzymes, and in turn a [[bromo]] group at position 7 (for [[bromazepam]]) and additional substituents (3-hydroxy group for [[oxazepam]] and tetrahydroxazole ring for [[cloxazolam]] and [[oxazolam]]) decrease the [[inhibitory]] potency of benzodiazepines on neurosteroids.<ref>{{cite journal |author=Usami N |coauthors=Yamamoto T, Shintani S, Ishikura S, Higaki Y, Katagiri Y, Hara A |year=2002 |month=April |title=Substrate specificity of human 3(20)alpha-hydroxysteroid dehydrogenase for neurosteroids and its inhibition by benzodiazepines |journal=Biol Pharm Bull |volume=25 |issue=4 |pages=441–5 |pmid=11995921 |url=http://www.jstage.jst.go.jp/article/bpb/25/4/441/_pdf |format=pdf |doi=10.1248/bpb.25.441}}</ref>
  +
  +
==Antagonists==
  +
* [[17-Phenylandrostenol]] - blocks the effects of neuroactive steroids without affecting responses produced by benzodiazepines or barbiturates
  +
  +
==See also==
  +
* [[5-alpha reductase]]
  +
* [[GABA A receptor]]
  +
  +
==References==
  +
{{Reflist|2}}
  +
  +
==Further reading==
  +
{{refbegin | 2}}
  +
  +
*{{cite journal | author = Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF, Mennerick S | title = Neurosteroid access to the GABA<sub>A</sub> receptor | journal = J. Neurosci. | volume = 25 | issue = 50 | pages = 11605–13 | year = 2005 | pmid = 16354918 | doi = 10.1523/JNEUROSCI.4173-05.2005 | issn = }}
  +
*{{cite journal | author = Wang JM, Johnston PB, Ball BG, Brinton RD | title = The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression | journal = J. Neurosci. | volume = 25 | issue = 19 | pages = 4706–18 | year = 2005 | pmid = 15888646 | doi = 10.1523/JNEUROSCI.4520-04.2005 | issn = }}
  +
*{{cite journal | author = Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A | title = Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 98 | issue = 5 | pages = 2849–54 |year = 2001 | pmid = 11226329 | doi = 10.1073/pnas.051628598 | issn = }}
  +
*{{cite journal | author = Melcangi RC, Celotti F, Martini L | title = Progesterone 5-alpha-reduction in neuronal and in different types of glial cell cultures: type 1 and 2 astrocytes and oligodendrocytes | journal = Brain Res. | volume = 639 | issue = 2 | pages = 202–6 | year = 1994 | pmid = 8205473 | doi = 10.1016/0006-8993(94)91731-0 | issn = }}
  +
*{{cite journal | author = Corpéchot C, Robel P, Axelson M, Sjövall J, Baulieu EE | title = Characterization and measurement of dehydroepiandrosterone sulfate in rat brain | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 78 | issue = 8 | pages = 4704–7 | year = 1981 | pmid = 6458035 | doi = 10.1073/pnas.78.8.4704| issn =}}</ref>
  +
{{refend}}
  +
  +
{{Hypnotics and sedatives}}
  +
{{GABAergics}}
  +
  +
[[Category:Neurosteroids|*]]
  +
[[Category:Steroids]]
  +
[[Category:Neurophysiology]]
  +
  +
[[pl:Neurosteroidy]]
  +
[[ru:Нейростероид]]
   
Neurosteroids affect synaptic functioning, are [[neuroprotective]], and affect [[myelinization]].[1] They are investigated for their potential to improve [[memory]] and cognitive ability. Progesterone as a neuroprotectant affects regulation of apoptotic genes. Its effect as a neurosteroid works predominantly through the GSK-3 beta pathway, as an inhibitor. Other GSK-3 beta inhibitors include bipolar mood stabilizers, lithium and valproic acid. It also raises epidermal growth factor-1 levels, a factor often used to induce proliferation, and used to sustain cultures of stem cells.
 
   
   

Revision as of 11:14, 13 March 2010

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


Neuroactive steroids (or neurosteroids) rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels.[1][2] In addition, these steroids may also exert effects on gene expression via intracellular steroid hormone receptors. Neurosteroids have a wide range of applications from sedation to treatment of epilepsy and traumatic brain injury.[3][4]

Apart from exerting effects on the genome via intracellular steroid receptors, neuroactive steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels. Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids. The 3alpha-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been surmised to enhance GABA-mediated chloride currents, whereas pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate display functional antagonistic properties at GABA A receptors.


Biosynthesis

Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids or gonadal steroids, especially testosterone. Neurosteroids are synthesized in the central and peripheral nervous system, especially in myelinating glial cells, from cholesterol or steroidal precursors imported from peripheral sources.[5][6] They include 3β-hydroxy-Δ5 derivatives, such as pregnenolone (PREG) and dehydroepiandrosterone (DHEA), their sulfates, and reduced metabolites such as the tetrahydroderivative of progesterone 3α-hydroxy-5α-pregnane-20-one (3α,5α-THPROG).

Mechanism

These compounds can act as allosteric modulators of neurotransmitter receptors, such as GABAA,[7][8][9][10] NMDA,[11] and sigma receptors.[12] Progesterone (PROG) is also a neurosteroid which activates progesterone receptors expressed in peripheral and central glial cells.[13][14][15][16] The 3α-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been surmised to enhance GABA-mediated chloride currents, whereas pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate display functional antagonistic properties at GABAA receptors.

Therapeutic application

Several synthetic neurosteroids have been used as sedatives for the purpose of general anaesthesia for carrying out surgical procedures. The best known of these are alphaxolone, alphadolone, hydroxydione and minaxolone. The first of these to be introduced was hydroxydione, which is the esterified 21-hydroxy derivative of 5β-pregnanedione. Hydroxydione proved to be a useful anaesthetic drug with a good safety profile, but was painful and irritating when injected probably due to poor water solubility. This led to the development of newer neuroactive steroids. The next drug from this family to be marketed was a mixture of alphaxolone and alphadolone, known as Althesin. This was withdrawn from human use due to rare but serious toxic reactions, but is still used in veterinary medicine. The next neurosteroid anaesthetic introduced into human medicine was the newer drug minaxolone, which is around three times more potent than althesin and retains the favourable safety profile, without the toxicity problems seen with althesin. However this drug was also ultimately withdrawn, not because of problems in clinical use, but because animal studies suggested potential carcinogenicity and since alternative agents were available it was felt that the possible risk outweighed the benefit of keeping the drug on the market.

File:Neuroactive steroids.png

More recently, another neurosteroid ganaxolone has been developed and is currently in clinical trials for the treatment of epilepsy. This drug has less sedative effects than the anaesthetic neurosteroids listed above, but is a potent anticonvulsant which may have some advantages over older anticonvulsant drugs, mainly less development of tolerance with extended use.

Role in antidepressant action

Certain antidepressant drugs such as fluoxetine and fluvoxamine which were thought to act primarily as selective serotonin reuptake inhibitors have also been found to increase the levels of certain neurosteroids.[17][18] Based on these studies, it has been proposed that increased levels of neurosteroids induced by fluoxetine or fluvoxamine may significantly contribute to or even be the predominate mechanism of action of these antidepressant drugs.

Benzodiazepines and effect on neurosteroids

Benzodiazepines may influence neurosteroid metabolism and progesterone levels which in turn may influence the functions of the brain. The pharmacological actions of benzodiazepines at the GABAA receptor are similar to those of neurosteroids. Neuroactive steroids are positive allosteric modulators of the GABAA receptor, enhancing GABA function. Many benzodiazepines (diazepam, medazepam, estazolam, nitrazepam flunitrazepam and temazepam) potently inhibit the enzymes involved in the metabolism of neurosteroids. Long-term administration of benzodiazepines may influence the concentrations of endogenous neurosteroids, and thereby would modulate the emotional state. Factors which effects the ability of individual benzodiazepines to alter neurosteroid levels depend on the molecular make up of the individual benzodiazepine drug. Presence of a substituent at N1 position of the diazepine ring and/or the chloro or nitro group at position 7 of the benzene ring contribute to potent inhibition of the isoenzymes, and in turn a bromo group at position 7 (for bromazepam) and additional substituents (3-hydroxy group for oxazepam and tetrahydroxazole ring for cloxazolam and oxazolam) decrease the inhibitory potency of benzodiazepines on neurosteroids.[19]

Antagonists

  • 17-Phenylandrostenol - blocks the effects of neuroactive steroids without affecting responses produced by benzodiazepines or barbiturates

See also

References

  1. Paul SM, Purdy RH (1992). Neuroactive steroids. FASEB J. 6 (6): 2311–22.
  2. Lan NC, Gee KW (1994). Neuroactive steroid actions at the GABAA receptor. Horm Behav 28 (4): 537–44.
  3. Morrow AL (2007). Recent developments in the significance and therapeutic relevance of neuroactive steroids--Introduction to the special issue. Pharmacol. Ther. 116 (1): 1–6.
  4. Dubrovsky BO (2005). Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog. Neuropsychopharmacol. Biol. Psychiatry 29 (2): 169–92.
  5. Agís-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006). Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103 (39): 14602–7.
  6. Mellon SH, Griffin LD (2002). Neurosteroids: biochemistry and clinical significance. Trends Endocrinol. Metab. 13 (1): 35–43.
  7. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986). Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232 (4753): 1004–7.
  8. Herd MB, Belelli D, Lambert JJ (2007). Neurosteroid modulation of synaptic and extrasynaptic GABAA receptors. Pharmacology & Therapeutics 116: 20.
  9. Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006). Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444 (7118): 486–9.
  10. Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E (1990). Neurosteroids act on recombinant human GABAA receptors. Neuron 4 (5): 759–65.
  11. Wu FS, Gibbs TT, Farb DH (1991). Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40 (3): 333–6.
  12. Maurice T, Junien JL, Privat A (1997). Dehydroepiandrosterone sulfate attenuates dizocilpine-induced learning impairment in mice via sigma 1-receptors. Behav. Brain Res. 83 (1-2): 159–64.
  13. Baulieu EE (1997). Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog. Horm. Res. 52: 1–32.
  14. Rupprecht R, Reul JM, Trapp T, van Steensel B, Wetzel C, Damm K, Zieglgänsberger W, Holsboer F (1993). Progesterone receptor-mediated effects of neuroactive steroids. Neuron 11 (3): 523–30.
  15. Jung-Testas I, Do Thi A, Koenig H, Désarnaud F, Shazand K, Schumacher M, Baulieu EE (1999). Progesterone as a neurosteroid: synthesis and actions in rat glial cells. J. Steroid Biochem. Mol. Biol. 69 (1-6): 97–107.
  16. Belelli D, Lambert JJ (2005). Neurosteroids: endogenous regulators of the GABAA receptor. Nat. Rev. Neurosci. 6 (7): 565–75.
  17. Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A (1998). Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc. Natl. Acad. Sci. U.S.A. 95 (6): 3239–44.
  18. Pinna G, Costa E, Guidotti A (2006). Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl.) 186 (3): 362–72.
  19. Usami N, Yamamoto T, Shintani S, Ishikura S, Higaki Y, Katagiri Y, Hara A (April 2002). Substrate specificity of human 3(20)alpha-hydroxysteroid dehydrogenase for neurosteroids and its inhibition by benzodiazepines. Biol Pharm Bull 25 (4): 441–5.

Further reading


  • Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF, Mennerick S (2005). Neurosteroid access to the GABAA receptor. J. Neurosci. 25 (50): 11605–13.
  • Wang JM, Johnston PB, Ball BG, Brinton RD (2005). The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J. Neurosci. 25 (19): 4706–18.
  • Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A (2001). Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc. Natl. Acad. Sci. U.S.A. 98 (5): 2849–54.
  • Melcangi RC, Celotti F, Martini L (1994). Progesterone 5-alpha-reduction in neuronal and in different types of glial cell cultures: type 1 and 2 astrocytes and oligodendrocytes. Brain Res. 639 (2): 202–6.
  • Corpéchot C, Robel P, Axelson M, Sjövall J, Baulieu EE (1981). Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc. Natl. Acad. Sci. U.S.A. 78 (8): 4704–7.</ref>


ru:Нейростероид


External links

This page uses Creative Commons Licensed content from Wikipedia (view authors).