Wikia

Psychology Wiki

Multiple realizability

Talk0
34,135pages on
this wiki

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Philosophy Index: Aesthetics · Epistemology · Ethics · Logic · Metaphysics · Consciousness · Philosophy of Language · Philosophy of Mind · Philosophy of Science · Social and Political philosophy · Philosophies · Philosophers · List of lists


Multiple realizability, in the philosophy of mind, is the thesis that the same mental kind (property, state, event) can be realized by different physical kinds (properties, states or events). The idea has its roots in the late 1960's and early 1970's when a number of philosophers, most prominently Hilary Putnam and Jerry Fodor, put it forth as a powerful argument, which has been extremely successful over the years, against reductionist accounts of the relation between mental and physical kinds. The original targets of these arguments were the type-identity theory and eliminative materialism. The same arguments from multiple realizability were also used to defend many versions of functionalism, especially Machine state functionalism.

In recent years, however, multiple realizability has been used as a weapon to attack the very theory that is was originally designed to defend and, such is the efficacy of the thesis of multiple realizability, functionalism has consequently fallen out of vogue as a dominant theory in the philosophy of mind. The overwhelmingly dominant theory ("received view" in the words of Lepore and Pylyshyn) in modern philosophy of mind is a sort of generic non-reductive physicalism and one of its central pillars is the hypothesis of multiple realizability.

Putnam's original formulationEdit

The locus classicus of the thesis of multiple realizability is to be found in several papers published by Hilary Putnam in the late 1960's. In these papers, he argued that, contrary to the famous claim of type-identity theory, it was not true that "pain is identical to C-fibre firing." It is quite possible, and indeed probable, that pain corresponds to, or is at least correlated with, completely different physical states of the nervous system in different organisms and yet they all experience the same mental state of "being in pain." Putnam cited numerous examples from all over the animal kingdom to illustrate his thesis. Is it likely that the brain structures of all mammals, reptiles, birds, amphibians and molluscs realize pain, or other mental states, in exactly the same way? Do they even have the same brain structures? Clearly not, if we are to believe the evidence furnished by comparative neuroanatomy and neurophysiology. How is it possible then that they can share the same mental states and properties? The answer had to be that these mental kinds were realized by different physical states in different species. Putnam then took his argument a step further, asking about such things as the nervous systems of alien beings, artificially-intelligent robots and silicon-based life forms. Should such hypothetical entities be considered a priori incapable of experiencing pain just because they did not possess the same neurochemistry as humans? Putnam concluded that type-identity and other reductive theorists had been making an extremely "ambitious" and "highly implausible" conjecture which could be disproven with just one example of multiple realizability. This is sometimes referred to as the likelihood argument.

Putnam also formulated a complementary argument based on, what he called, functional isomorphism. He defined the concept in these terms: "Two systems are functionally isomorphic if there is a correspondence between the states of one and the states of the other that preserves functional relations." So, in the case of computers, two machines are functionally isomorphic if and only if the sequential relations among states in the first are exactly mirrored by the sequential relations among states in the other. Therefore, a computer made out of silicon chips and a computer made out of cogs and wheels can be functionally isomorphic but constitutionally diverse. Functional isomorphism implies multiple realizability. This is sometimes referred to as an "a priori argument".

Jerry Fodor, Putnam and others immediately noted that, along with being a very effective argument against type-identity theories, multiple realizability implied that any low-level explanation of higher-level mental phenomena would be insufficiently abstract and general. Functionalism, which attempts to identify mental kinds with functional kinds that are characterized exclusively in terms of causes and effects, abstracts from the physico-chemical level of microphysics and hence seemed to be a more suitable alternative explanation of the relation between mind and body. In fact, there are many functional kinds such as mousetraps, software and bookshelves which are multiply realized at the physical level.

Fodor's generalizationEdit

Jaegwon Kim, in 1993, took up the challenge of responding to the problems posed by multiple realizability for reductionist theories by suggesting that the physical realization base of a particular mental state was not a particular physical state but the disjunction of the physical states which realize it. Jerry Fodor replied to this objection by formulating a generalization of the multiple realizability thesis. According to Fodor, multiple realizability was not just something that occurred "across physical structure-types" but was a phenomenon that could occur even within the same token system (such as an organism). At different times, the same organism may realize type-identical mental kinds in physically different forms. (This thesis was later given some empirical support with the discovery of the relative plasticity of the human brain).

Fodor used this generalized multiple realizability thesis to argue against reductionism of the mind and of the special sciences. The key to Fodor's argument is that, in his characterization of reductionism, all mental kind predicates in an ideal and completed psychology must correspond with a physical kind predicate in an ideal and completed physics. He suggested taking Ernest Nagel's theory of reduction, which insisted on the derivability of all terms in the theory to be reduced from terms in the reducing theory and the bridging laws, as the canonical theory of reduction. Given generalized multiple realizability, the physical science part of these psychophysical bridge laws will end up being a, possibly infinite, disjunction of all the terms referring to possible physical realizations of a mental kind. This disjunction cannot be a kind-predicate and therefore the entire statement cannot be a law of physics. The special sciences cannot be reduced to physics in this way, according to Fodor.

Later on, in 1988, Hilary Putnam applied the argument from Fodor's generalized version of multiple realizability to argue against functionalism itself, including, and above all, his own version of functionalism, machine state functionalism. Noting that functionalism is essentially a watered-down reductionist or identity theory in which mental kinds are ultimately identified with functional kinds, Putnam argued that mental kinds were probably multiply realizable over functional kinds. The same mental state or property could be implemented or realized by different states of a universal Turing machine.

Objections and responsesEdit

Against the early versionEdit

Early objections to multiple realizability were limited to the narrow, "across structures-type" version. Starting with David Lewis, many reductionists argued that it is very common, perhaps the rule, in actual scientific practice to reduce one theory to another by way of "local" and structure-specific reductions. A frequently cited example of this sort of intertheoretic reduction is the case of temperature from classical thermodynamics. Temperature is identical to mean molecular kinetic energy. But this is only true of temperature in a gas. Temperature in a solid is identical to mean maximal molecular kinetic energy, because the molecules of a solid are more restricted in their movements. Temperature in a plasma is something of a mystery, since the molecules of a plasma are torn apart. Therefore, temperature, in classical thermodynamics is multiply realized in a wide diversity of microphysical states.

One common defence of multiple realizability in the literature, however, is that any such response which attempts to address the problem of the possibility of generalized multiple realizability must necessarily be so "local" and "context" specific in nature, referring exclusively to a certain token system of a certain structure-type at a certain time, that its reductions would be incompatible with even a minimally acceptable degree of generality in scientific theorizing. This problem is well illustrated by the controversial question of the plasticity of the human brain. Neural plasticity consists simply in the fact that different areas of the brain can, and often do, take over the functions of other parts which have been damaged as the result of traumatic injury, pathology, natural biological development and other processes. Any psychology which is narrowed down sufficiently to handle this level of multiple realizability will almost certainly not be general enough to capture the generalizations needed to explain only human psychology.

Against the general versionEdit

However, reductionists (perhaps the most recent examples being Bechtel and Mundale) reply that this is simply not empirically plausible. In order to conduct research and carry out experiments in the neurosciences some universal consistencies must either exist or be assumed to exist in brain structures. It is the similarity (or homology) of brain structures which allows us to generalize across species. If multiple realizability (especially the generalized form) were an empirical fact, then results from experiments conducted on one species of animal (or one organism) would not be meaningful or useful when generalized to explain the behavior or other characteristics of another species (or organism of the same species).

Sungsu Kim has recently responded to this objection by pointing to the important distinction between homology of brain structures and homoplasy. Homologies are any characteristics of physiology, morphology, behavior or psychology that are shared by two or more species and that are inherited from a common ancestor. Homoplasies are characteristics that are shared by two or more species but that are not inherited from a common ancestor. Human arms and bird wings are homologous, while bird wings and bat wings (even though they strongly resemble each other) are not. The fact that brain structures are homologous is no evidence either for or against multiple realizability. The only way to really empirically test the thesis of multiple realizability would be to examine homoplasious brain structures and determine whether some "psychological processes or functions might be 'constructed' from different material" and supported by different brain structures just as the wings of bats and those of birds are constructed from different materials. The emergence of the same identical brain structures by evolutionary convergence would, perhaps, provide some (weak) evidence against multiple realizability, since it is highly improbable that this could actually happen.

It would be weak evidence because it would still not eliminate the possibility of the existence of mental states identical to ours in non-carbon based life forms on other planets or in machines.

Kim's argument and a replyEdit

Jaegwon Kim has more recently argued against multiple realizability that it conflicts with some fundamental constrants on the definition of kinds and with general rules of scientific taxonomy. Kim's argument is based on two essential premises:

The Causal Inheritance Principle: if mental property M is realized in a system at time t in virtue of physical realization base P, the causal powers of M are identical with the causal powers of P.

From this it follows that:

Instances of M that are realized by the same physical base must be grouped under one kind, since the physical base is a causal kind, and instances of M with different realization bases must be grouped under distinct kinds.

The second premise is

The Principle of the Causal Individuation of Kinds : kinds in science are individuated on the basis of their causal powers.

From all of this, it follows, according to Kim, that "if mental kinds are multiplly realizable, then they are disqualified as proper scientific kinds...because they are realized by diverse physical causal kinds."

Ron McClamrock has responded that the claim that "instances of M that are realized by the same physical base must be grouped under one kind..." is "simply false". The fact that a complete specification of the causal powers of a mental kind at a certain time will be a complete specification of the causal powers of the physical state which implements it follows as a logical consequence of token materialism. But Kim's assertion only follows if we assume that the only specification of causal kinds can be in terms of causal powers of tokens. He suggests understanding higher-level causal powers as simply more general and abtract characterizations of the lower-level causal powers implemented in the physical structure of a system. There are many varieties of causal taxonomies which classify things according to various kinds of causal powers they possess. The taxonomy of orbiting bodies, e.g., will probably specify the causal powers of objects in terms of mass, position and velocity and will abtsract away from such considerations as the body's chemical composition, geology or microbiotic agglomerations. This is a more abstract and less complete characterization of the causal powers of a system which allows for the possibility of grouping together physically type-distinct instances of the higher-level kind (in this case, planets, stars and other orbiting bodies).

Moreover, taxonomies in computer science are typically characterized by such abstractions. What is of interest at the level of information processing is such things as registers and microprogramming operations not the causal powers of the material structure of semiconductors.

See alsoEdit

ReferencesEdit

  • Putnam, Hilary. Representation and Reality.1988. Cambridge, MA. MIT Press.
  • Fodor, Jerry. The Language of Thought. 1975. New York. Thomas Cromwell.
  • Bechtel, William and Mundale, Jennifer. Multiple Realizability Revisited in Philosophy of Science 66: 175-207.
  • Kim, Sungsu. Testing Multiple Realizability: A Discussion of Bechtel and Mundale in Philosophy of Science. 69: 606-610.
  • Kim, Jaegwon. Multiple Realizability and the Metaphysics of Reduction on Philosophy and Phenomenological Research. 52: 1-26.
  • McClamrock, Ron. Emergence Unscathed: Kim on Non-Reducible Types in The Electronic Journal of Analytic Philosophy. 1993.
  • Shapiro, Lawrence A. Multiple Realizations.

External linksEdit

This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki