Psychology Wiki
Register
Advertisement

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


This article needs rewriting to enhance its relevance to psychologists..
Please help to improve this page yourself if you can..


SEM Lymphocyte

A scanning electron microscope (SEM) image of a single human lymphocyte.

A lymphocyte is a type of white blood cell in the vertebrate immune system.[1]

By their appearance under the light microscope, there are two broad categories of lymphocytes, namely the large granular lymphocytes and the small lymphocytes. Functionally distinct subsets of lymphocytes correlate with their appearance. Most, but not all large granular lymphocytes are more commonly known as the natural killer cells (NK cells). The small lymphocytes are the T cells and B cells. Lymphocytes play an important and integral role in the body's defenses.

Frrom a psychological point of view if lymphocyte activity is affected by psychological factors such as stress, personality this may be used as a mediating factor in explainations in psychosomatic medicine of the link between such factors and infections

Types of lymphocytes[]

File:Lymphocyte2.jpg

A stained lymphocyte surrounded by red blood cells viewed using a light microscope.

The three major types of lymphocyte are T cells, B cells and natural killer (NK) cells

Natural killer cells[]

Main article: NK cells

NK cells are a part of innate immune system and play a major role in defending the host from both tumours and virally infected cells. NK cells distinguish infected cells and tumours from normal and uninfected cells by recognizing alterations in levels of a surface molecule called MHC (major histocompatibility complex) class I. NK cells are activated in response to a family of cytokines called interferons. Activated NK cells release cytotoxic (cell-killing) granules which then destroy the altered cells.[2] They were named "natural killer" because of the initial notion that they do not require prior activation in order to kill cells which are missing MHC class I.

T cells and B cells[]

Main article: T cells

T cells and B cells are the major cellular components of the adaptive immune response. T cells are involved in cell-mediated immunity whereas B cells are primarily responsible for humoral immunity (relating to antibodies). The function of T cells and B cells is to recognize specific “non-self” antigens, during a process known as antigen presentation. Once they have identified an invader, the cells generate specific responses that are tailored to maximally eliminate specific pathogens or pathogen infected cells. B cells respond to pathogens by producing large quantities of antibodies which then neutralize foreign objects like bacteria and viruses. In response to pathogens some T cells, called helper T cells produce cytokines that direct the immune response while other T cells, called cytotoxic T cells, produce toxic granules that induce the death of pathogen infected cells. Following activation, B cells and T cells leave a lasting legacy of the antigens they have encountered, in the form of memory cells. Throughout the lifetime of an animal these memory cells will “remember” each specific pathogen encountered, and are able to mount a strong response if the pathogen is detected again.

Lymphocyte development[]

Hematopoiesis (human) diagram

Development of blood cells

Mammalian stem cells differentiate into several kinds of blood cell within the bone marrow.[3] This process is called haematopoiesis. All lymphocytes originate, during this process, from a common lymphoid progenitor before differentiating into their distinct lymphocyte types. The differentiation of lymphocytes follows various pathways in a hierarchical fashion as well as in a more plastic fashion. The formation of lymphocytes is known as lymphopoiesis. B cells mature into B lymphocytes in the bone marrow[4], while T cells migrate to and mature in a distinct organ, called the thymus. Following maturation, the lymphocytes enter the circulation and peripheral lymphoid organs (e.g the spleen and lymph nodes) where they survey for invading pathogens and/or tumour cells.

The lymphocytes involved in adaptive immunity (i.e. B and T cells) differentiate further after exposure to an antigen; they form effector and memory lymphocytes. Effector lymphocytes function to eliminate the antigen, either by releasing antibodies (in the case of B cells), cytotoxic granules (cytotoxic T cells) or by signaling to other cells of the immune system (helper T cells). Memory cells remain in the peripheral tissues and circulation for an extended time ready to respond to the same antigen upon future exposure.

They live weeks to several years[5], which is very long compared to other leukocytes.

Characteristics[]

SEM blood cells

A scanning electron microscope image of normal circulating human blood showing red blood cells, several types of white blood cells including lymphocytes, a monocyte, a neutrophil and many small disc-shaped platelets.

Microscopically, in a Wright's stained peripheral blood smear, a normal lymphocyte has a large, dark-staining nucleus with little to no basophilic cytoplasm. In normal situations, the coarse, dense nucleus of a lymphocyte is approximately the size of a red blood cell (about 7 micrometres in diameter).[3] Some lymphocytes show a clear perinuclear zone (or halo) around the nucleus or could exhibit a small clear zone to one side of the nucleus. Polyribosomes are a prominent feature in the lymphocytes and can be viewed with an electron microscope.[3] The ribosomes are involved in protein synthesis allowing the generation of large quantities of cytokines and immunoglobulins by these cells.

It is impossible to distinguish between T cells and B cells in a peripheral blood smear.[3] Normally, flow cytometry testing is used for specific lymphocyte population counts. This can be used to specifically determine the percentage of lymphocytes that contain a particular combination of specific cell surface proteins, such as immunoglobulins or cluster of differentiation (CD) markers or that produce particular proteins (for example, cytokines using intracellular cytokine staining (ICCS)). In order to study the function of a lymphocyte by virtue of the proteins it generates, other scientific techniques like the ELISPOT or secretion assay techniques can be used.[2]

Typical recognition markers for lymphocytes[6]
LYMPHOCYTE CLASS FUNCTION OF LYMPHOCYTE PROPORTION PHENOTYPIC MARKER(S)
NK cells Lysis of virally infected cells and tumour cells 7% (2-13%) CD16 CD56 but not CD3
Helper T cells Release cytokines and growth factors that regulate other immune cells 46% (28-59%) TCRαβ, CD3 and CD4
Cytotoxic T cells Lysis of virally infected cells, tumour cells and allografts 19% (13-32%) TCRαβ, CD3 and CD8
γδ T cells Immunoregulation and cytotoxicity TCRγδ and CD3
B cells Secretion of antibodies 23% (18-47%) MHC class II, CD19 and CD21

In the circulatory system they move from lymph node to lymph node. This contrasts with macrophages, which are rather stationary in the nodes.

Lymphocytes and disease[]

A lymphocyte count is usually part of a peripheral complete blood cell count and is expressed as percentage of lymphocytes to total white blood cells counted. An increase in lymphocytes is usually a sign of a viral infection (in some rare case, leukemias are found through an abnormally raised lymphocyte count in an otherwise normal person). A general increase in the number of lymphocytes is known as lymphocytosis whereas a decrease is lymphocytopenia.

A decrease in lymphocytes occurs when the human immunodeficiency virus (HIV) infects and destroys T cells (specifically, the CD4+ subgroup of T lymphocytes). Without the key defense that these T cells provide, the body becomes susceptible to opportunistic infections that otherwise would not affect healthy people. The extent of HIV progression is typically determined by measuring the percentage of CD4+ T cells in the patient's blood. The effects of other viruses or lymphocyte disorders can also often be estimated by counting the numbers of lymphocytes present in the blood.

Blood content[]

File:Reference ranges for blood tests - white blood cells.png

Reference ranges for blood tests of white blood cells, comparing lymphocyte amount (shown in light blue) with other cells.

See also[]

References[]

  1. Dorlands Medical Dictionary:lymphocyte. URL accessed on 2009-01-27.
  2. 2.0 2.1 Janeway, Charles; Paul Travers, Mark Walport, and Mark Shlomchik (2001). Immunobiology; Fifth Edition, New York and London: Garland Science..
  3. 3.0 3.1 3.2 3.3 Abbas AK and Lichtman AH (2003). Cellular and Molecular Immunology, 5th ed., Saunders, Philadelphia.
  4. Kumar, Abbas, Fausto. Pathologic Basis of Disease, 7th ed..
  5. Semester 4 medical lectures at Uppsala University 2008 by Leif Jansson
  6. (2005-05)Lymphocyte subsets in term and significantly preterm UK infants in the first year of life analysed by single platform flow cytometry. Clin Exp Immunol 140 (2): 289–292.

External links[]

Commons-logo
Wikimedia Commons has media related to:





This page uses Creative Commons Licensed content from Wikipedia (view authors).
Advertisement