Psychology Wiki

Linear model

34,203pages on
this wiki
Add New Page
Talk0 Share

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory

In statistics the linear model is a model given by

Y = X \beta + \varepsilon

where Y is an n×1 column vector of random variables, X is an n×p matrix of "known" (i.e., observable and non-random) quantities, whose rows correspond to statistical units, β is a p×1 vector of (unobservable) parameters, and ε is an n×1 vector of "errors", which are uncorrelated random variables each with expected value 0 and variance σ2. Often one takes the components of the vector of errors to be independent and normally distributed. Having observed the values of X and Y, the statistician must estimate β and σ2. Typically the parameters β are estimated by the method of maximum likelihood, which in the case of normal errors is equivalent (by the Gauss-Markov theorem) to the method of least squares.

If, rather than taking the variance of ε to be σ2I, where I is the n×n identity matrix, one assumes the variance is σ2M, where M is a known matrix other than the identity matrix, then one estimates β by the method of "generalized least squares", in which, instead of minimizing the sum of squares of the residuals, one minimizes a different quadratic form in the residuals — the quadratic form being the one given by the matrix M-1. This leads to the estimator


which is the Best Linear Unbiased Estimator for \beta. If all of the off-diagonal entries in the matrix M are 0, then one normally estimates β by the method of "weighted least squares", with weights proportional to the reciprocals of the diagonal entries.

Ordinary linear regression is a very closely related topic.

Generalizations Edit

Generalized linear models Edit

Generalized linear models, for which rather than

E(Y) = Xβ,

one has

g(E(Y)) = Xβ,

where g is the "link function". An example is the Poisson regression model, which states that

Yi has a Poisson distribution with expected value eγ+δxi.

The link function is the natural logarithm function. Having observed xi and Yi for i = 1, ..., n, one can estimate γ and δ by the method of maximum likelihood.

General linear model Edit

The general linear model (or multivariate regression model) is a linear model with multiple measurements per object. Each object may be represented in a vector.

See also Edit

  • ANOVA, or analysis of variance, is historically a precursor to the development of linear models. Here the model parameters themselves are not computed, but X column contributions and their significance are identified using the ratios of within-group variances to the error variance and applying the F Modell
This page uses Creative Commons Licensed content from Wikipedia (view authors).

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki