Psychology Wiki
Register
Line 54: Line 54:
   
 
* Vigil, J. M., [[David C. Geary|Geary, D. C.]], & Byrd-Craven, J. (2005). A life history assessment of early childhood sexual abuse in women. ''[[Developmental Psychology]]'', 41, 553-561. [http://web.missouri.edu/~psycorie/Vigiletal%5BDP2005%5D.pdf Full text]
 
* Vigil, J. M., [[David C. Geary|Geary, D. C.]], & Byrd-Craven, J. (2005). A life history assessment of early childhood sexual abuse in women. ''[[Developmental Psychology]]'', 41, 553-561. [http://web.missouri.edu/~psycorie/Vigiletal%5BDP2005%5D.pdf Full text]
  +
  +
* Walker, R., Gurven, M., Hill, K., Migliano, A., Chagnon, N., Djurovic, G., Hames, R., Hurtado, A.M., Kaplan, H., Oliver, W., de Souza, R., Valeggia, C., Yamauchi, T. (2006). Growth rates, developmental markers and life histories in 21 small-scale societies. ''[[American Journal of Human Biology]]'', 18, 295-311. [http://www.anth.ucsb.edu/faculty/gurven/ Full text] (Click "Papers," and then click title.)
   
 
[[Category:Biology]]
 
[[Category:Biology]]

Revision as of 03:43, 25 June 2006

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


Life history theory is a method of analysis in animal and human biology, psychology, and especially evolutionary sociobiology which postulates that many of the physiological traits and behaviors of individuals may be best understood in relation to the key maturational and reproductive characteristics that define the life course.

Examples of these characteristics include:

  • Age at weaning
  • Age of sexual maturity or puberty
  • Adult body size
  • Time to first sexual activity or mating
  • Time to first reproduction
  • Duration of gestation
  • Litter size
  • Interbirth interval

Variations of these characteristics reflect differing allocations of an individual's resources (i.e., time, effort, and energy expenditure) to competing life functions, especially growth, body maintenance, and reproduction. For an individual, the resources in a particular environment are finite. Time, effort, and energy used for one purpose diminishes the time effort, and energy available for another. For example, resources spent growing to a larger body size cannot be spent increasing the number of offspring.

Thus allocation of resources involves trade-offs. These trade-offs and strategies can be compared between species. Two of the most well-known trade-offs involve number of offspring (few or many) and timing of reproduction (accelerated maturation and reproduction versus delayed, allowing for larger size and more complex social supports). The extremes at the species level of these fundamental dimensions of reproduction were recognized long before life history theory, and are traditionally termed r/K selection theory. An r-selection strategy is the production of a large number of offspring (of whom only a minority may survive) as early in life as possible. The K-selection strategy is to produce a smaller number of "fitter" offspring with higher survival chances.

According to life history theory the individuals of a species are able to make limited shifts in reproductive strategies in response to the prevailing environments. Depending on abundance of resources and probable individual longevity, individuals consciously or unconsciously shift their reproductive strategy in one direction or the other to take advantage of available resources or to compensate for resource shortage or uncertainty.

Life histories of individual human beings may be analyzed from the same perspectives, and the theory provides some explanatory and predictive power when applied to groups of people in different life situations. For example, it predicts that in a stressful environment, or one with uncertain resources, sexual development, mating, and pregnancy may be accelerated, with acceptance of higher risks and production of more children, while security and high resource availability tend to favor slower maturation, later mating, and fewer offspring.

Life history theory has provided new perspectives in understanding many aspects of human reproductive behavior, such as the relationship between poverty and fertility. A number of statistical predictions have been confirmed by social data, though not always reproducibly. The implications for social policy have been hotly debated because statistical associations are not always causal, and a preferred interpretation may be a more minor factor than another unpalatable relationship.

See also

References

  • Charnov, E. L. (1993). Life history invariants. Oxford, England: Oxford University Press.
  • Ellis, B.J. (2004). Timing of pubertal maturation in girls: an integrated life history approach. Psychological Bulletin. 130:920-58.
  • Roff, D. (1992). The evolution of life histories: Theory and analysis. New York:Chapman & Hall.
  • Stearns, S. (1992). The evolution of life histories. Oxford, England: Oxford University Press.

Further reading

  • Borgerhoff Mulder, M. (2000). Optimizing offspring: The quality-quantity tradeoff in agropastoral Kipsigis. Evolution and Human Behavior 21(6):390-410. Full text (Click on "Publications" and then title)
  • Geary, D. C. (2002). Sexual selection and human life history. In R. Kail (Ed.), Advances in child development and behavior (Vol 30, pp. 41-101). San Diego, CA: Academic Press. Full text
  • Gurven, M., & Kaplan, H. (2006). Determinants of time allocation to production across the lifespan among the Machiguenga and Piro Indians of Peru. Human Nature 17, 1, 1-49. Full text (Click "Papers," and then click title.)
  • Hagen, E. H., Barrett, H. C. and Price, M. E. (in press). Do human parents face a quantity-quality tradeoff? Evidence from a Shuar community. American Journal of Physical Anthropology. Full text
  • Mace,R., (2000). Evolutionary Ecology of Human Life History. Animal Behaviour. vol. 59, issue 1, 1-10.Full text
  • Walker, R., Gurven, M., Hill, K., Migliano, A., Chagnon, N., Djurovic, G., Hames, R., Hurtado, A.M., Kaplan, H., Oliver, W., de Souza, R., Valeggia, C., Yamauchi, T. (2006). Growth rates, developmental markers and life histories in 21 small-scale societies. American Journal of Human Biology, 18, 295-311. Full text (Click "Papers," and then click title.)
This page uses Creative Commons Licensed content from Wikipedia (view authors).