Fandom

Psychology Wiki

Kruskal-Wallis one-way analysis of variance

Redirected from Kruskal-Wallis test

34,203pages on
this wiki
Add New Page
Talk0 Share

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory


In statistics, the Kruskal-Wallis one-way analysis of variance by ranks (named after William Kruskal and Allen Wallis) is a non-parametric method. Intuitively, it is identical to a one-way analysis of variance, with the data replaced by their ranks.

Since it is a non-parametric method, the Kruskal-Wallis test does not assume a normal population, unlike the analogous one-way analysis of variance.

MethodEdit

  1. Rank all data from all groups together.
  2. The test statistic is given by: K = (N-1)\frac{\sum_{i=1}^g n_i(\bar{r}_{i\cdot} - \bar{r})^2}{\sum_{i=1}^g\sum_{j=1}^{n_i}(r_{ij} - \bar{r})^2}, where:
    • n_g is the number of observations in group g
    • r_{ij} is observation j from group i
    • N is the total number of observations across all groups
    • \bar{r}_{i\cdot} = \frac{\sum_{j=1}^{n_i}{r_{ij}}}{n_i},
    • \bar{r} is the average of all the r_{ij}, equal to (N+1)/2.
      Notice that the denominator of the expression for K is exactly (N-1)N(N+1)/12.
  3. Finally, the p-value is approximated by \mathbf{P}(\chi^2_{N-g} \ge K). If some ni's are small the distribution of K can be quite different from this.

See alsoEdit

ReferencesEdit

  • William H. Kruskal and W. Allen Wallis. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47 (260): 583–621, December 1952.es:Prueba de Kruskal-Wallis

nl:Kruskal-Wallis

This page uses Creative Commons Licensed content from Wikipedia (view authors).

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki