Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)

A Hopfield net is a form of recurrent artificial neural network invented by John Hopfield. Hopfield nets serve as content-addressable memory systems with binary threshold units. They are guaranteed to converge to a stable state.


The units in Hopfield nets are binary threshold units, i.e. the units only take on two different values for their states and the value is determined by whether or not the units' input exceeds their threshold. Hopfield nets can either have units that take on values of 1 or -1, or units that take on values of 1 or 0. So, the two possible definitions for unit i's activation, a_i, are:

(1) a_i = \left\{\begin{matrix} 1 & \mbox {if }\sum_{j}{w_{ij}s_j}>\theta_i, \\
-1 & \mbox {otherwise.}\end{matrix}\right.

(2) a_i = \left\{\begin{matrix} 1 & \mbox {if }\sum_{j}{w_{ij}s_j}>\theta_i, \\
0 & \mbox {otherwise.}\end{matrix}\right.


  • w_{ij} is the connection weight from unit j to unit i.
  • s_j is the state of unit j.
  • \theta_i is the threshold of unit i.

The connections in a Hopfield net have two restrictions on them:

  • w_{ii}=0, \forall i. (No unit has a connection with itself.)
  • w_{ij}=w_{ji}, \forall i,j. (All connections are symmetric.)

Hopfield nets have a scalar value associated with each state of the network referred to as the "energy", E, of the network, where: E = -\sum_{i<j}{w_{ij}{s_i}{s_j}}+\sum_i{\theta_i\ s_i}

This value is called the "energy" because the definition ensures that if units are randomly chosen to update their activations the network will converge to states which are local minima in the energy function (which is considered to be a Lyapunov function). Thus, if a state is a local minimum in the energy function it is a stable state for the network.


Training a Hopfield net involves lowering the energy of states that the net should "remember". This allows the net to serve as a content addressable memory system, that is to say, the network will converge to a "remembered" state if it is given only part of the state. For example, if we train a Hopfield net with five units so that the state (1, 0, 1, 0, 1) is an energy minimum, and we give the network the state (1, 0, 0, 0, 1) it will converge to (1, 0, 1, 0, 1). Thus, the network is properly trained when the energy of states which the network should remember are local minima.


J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities", Proceedings of National Academy of Sciences, vol. 79 no. 8 pp. 2554–2558, April 1982. PNAS Reprint (Abstract) PNAS Reprint (PDF)

See alsoEdit

External links Edit

ru:Нейронная сеть Хопфилда sv:Hopfieldnät

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.