Psychology Wiki


34,135pages on
this wiki

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)

A homeobox is a DNA sequence found within genes that are involved in the regulation of development (morphogenesis) of animals. Genes that have a homeobox are called homeobox genes and form the homeobox gene family. They were discovered independently in 1983 by Walter Gehring and his colleagues at the University of Basel, Switzerland, and Matthew Scott and Amy Weiner, who were then working with Thomas Kaufman at Indiana University in Bloomington.

A homeobox is about 180 base pairs long; it encodes a protein domain (the homeodomain) which can bind DNA. Homeobox genes encode transcription factors which typically switch on cascades of other genes, for instance all the ones needed to make a leg. The homeodomain binds DNA in a specific manner. However, the specificity of a single homeodomain protein is usually not enough to recognize only its desired target genes. Most of the time, homeodomain proteins act in the promoter region of their target genes as complexes with other transcription factors, often also homeodomain proteins. Such complexes have a much higher target specificity than a single homeodomain protein.

A particular subgroup of homeobox genes are the Hox genes, which are found in a special gene cluster, the Hox cluster (also called Hox complex). Hox genes function in patterning the body axis. Thus, by providing the identity of particular body regions, Hox genes determine where limbs and other body segments will grow in a developing fetus. Mutation in vertebrate Hox genes usually results in spontaneous abortion.


Pit-1 homeobox-containing protein bound to DNA

The homeobox genes were first found in the fruit fly Drosophila melanogaster and have subsequently been identified in many other species. The diagram to the right is a structural model of the Rattus norvegicus Pit-1 homeobox-containing protein (purple) bound to DNA. Pit-1 is a regulator of growth hormone gene transcription. Pit-1 is a member of the POU DNA-binding domain family of transcription factors so it can bind to DNA using both the POU domain and the homeodomain. Plants and animals do not share the same homeotic genes, and this suggests that homeotic genes arose once in the early evolution of animals and once again in the early evolution of plants. Humans generally contain homeobox genes in four clusters, called HOXA (or sometimes HOX1), HOXB, HOXC, or HOXD, on chromosomes 7, 17, 12, and 2, respectively.

Mutations to homeobox genes can produce easily visible phenotypic changes. Two examples of homeobox mutations in the above-mentioned fruit fly are legs where the antennae should be, and a second pair of wings. Duplication of homeobox genes can produce new body segments, and such duplications are likely to have been important in the evolution of segmented animals. Interestingly, there is one insect family, the xyelid sawflies, in which both the antennae and mouthparts are remarkably leg-like in structure.

See alsoEdit


  • Lodish et al (2003). Molecular Cell Biology, 5th Edition, New York: W.H. Freeman and Company. ISBN 0-7167-4366-3.

External linksEdit

es:Homeobox fr:Homéoboîte lt:Homeozinis genas nl: Homeoboxpt:Homeobox

This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki