# Gamma function

*34,202*pages on

this wiki

## Ad blocker interference detected!

### Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Assessment |
Biopsychology |
Comparative |
Cognitive |
Developmental |
Language |
Individual differences |
Personality |
Philosophy |
Social |

Methods |
Statistics |
Clinical |
Educational |
Industrial |
Professional items |
World psychology |

**Statistics:**
Scientific method ·
Research methods ·
Experimental design ·
Undergraduate statistics courses ·
Statistical tests ·
Game theory ·
Decision theory

In mathematics, the **Gamma function** extends the factorial function to complex and non natural numbers (where it is defined). The factorial function of an integer *n* is written *n*! and is equal to the product *n*! = 1 × 2 × 3 × ... × *n*. The Gamma function "fills in" the factorial function for fractional values of *n* and for complex values of *n*. If *z* is a complex variable, then for integer values only, we have

but for fractional and complex values of *z*, the above equation does not apply, since the factorial function is not defined.

## DefinitionEdit

The notation Γ(*z*) is due to Adrien-Marie Legendre. If the real part of the complex number *z* is positive, then the integral

converges absolutely. Using integration by parts, one can show that

Because Γ(1) = 1, this relation implies that

for all natural numbers *n*. It can further be used to extend Γ(*z*) to a meromorphic function defined for all complex numbers *z* except *z* = 0, −1, −2, −3, ... by analytic continuation.

It is this extended version that is commonly referred to as the Gamma function.

## Alternative definitionsEdit

The following infinite product definitions for the Gamma function, due to Euler and Weierstrass respectively, are valid for all complex numbers *z* which are not non-positive integers:

where γ is the Euler-Mascheroni constant.

## PropertiesEdit

Other important functional equations for the Gamma function are Euler's reflection formula

and the **duplication formula**

The duplication formula is a special case of the **multiplication theorem**

Perhaps the most well-known value of the Gamma function at a non-integer argument is

which can be found by setting *z*=1/2 in the reflection formula or by noticing the beta function for (1/2, 1/2), which is .

The derivatives of the Gamma function are described in terms of the polygamma function. For example:

The Gamma function has a pole of order 1 at *z* = −*n* for every natural number *n*; the residue there is given by

The Bohr-Mollerup theorem states that among all functions extending the factorial functions to the positive real numbers, only the Gamma function is log-convex, that is, its natural logarithm is convex.

An alternative notation which was originally introduced by Gauss and which is sometimes used is the **Pi function**, which in terms of the Gamma function is

so that

Using the Pi function the reflection formula takes on the form

where sinc_{N} is the normalized Sinc function, while the multiplication theorem takes on the form

We also sometimes find

which is an entire function, defined for every complex number. That π(*z*) is entire entails it has no poles, so Γ(*z*) has no zeros.

## Relation to other functions Edit

In the first integral above, which defines the Gamma function, the limits of integration are fixed. The incomplete Gamma function is the function obtained by allowing either the upper or lower limit of integration to be variable.

The Gamma function is related to the Beta function by the formula

The derivative of the logarithm of the Gamma function is called the digamma function; higher derivatives are the polygamma functions.

The analog of the Gamma function over a finite field or a finite ring are the Gaussian sums, a type of exponential sum.

The reciprocal Gamma function is an entire function and has been studied as a specific topic.

## PlotsEdit

## Particular values Edit

(undefined) (undefined) (undefined)

## ApproximationsEdit

Complex values of the Gamma function can be computed numerically with arbitrary precision using Stirling's approximation or the Lanczos approximation.

## See alsoEdit

- Beta function
- Bohr-Mollerup theorem
- Digamma function
- Gamma distribution
- Gauss's constant
- Multivariate Gamma function
- Polygamma function
- Stirling's approximation
- Trigamma function
- Elliptic gamma function

## References Edit

- Milton Abramowitz and Irene A. Stegun, eds.
*Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.*New York: Dover, 1972.*(See Chapter 6)*

- G. Arfken and H. Weber.
*Mathematical Methods for Physicists*. Harcourt/Academic Press, 2000.*(See Chapter 10.)*

- Harry Hochstadt.
*The Functions of Mathematical Physics*. New York: Dover, 1986*(See Chapter 3.)*

- W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling.
*Numerical Recipes in C*. Cambridge, UK: Cambridge University Press, 1988.*(See Section 6.1.)*

## External links Edit

- Examples of problems involving the Gamma function can be found at Exampleproblems.com.

- P. Sebah, X. Gourdon.
*Introduction to the Gamma Function*. In PostScript and HTML formats.de:Gammafunktion

es:Función gamma fr:Fonction Gamma d'Euler ko:감마 함수he:פונקציית גמא nl:Gammafunctieru:Гамма-функция Эйлера sl:Funkcija gama sr:Гама-функција su:Fungsi gamma fi:Gammafunktio sv:Gammafunktionen zh:Γ函数

This page uses Creative Commons Licensed content from Wikipedia (view authors). |