Psychology Wiki
Register
Advertisement

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Cognitive Psychology: Attention · Decision making · Learning · Judgement · Memory · Motivation · Perception · Reasoning · Thinking  - Cognitive processes Cognition - Outline Index


In emulation learning, subjects learn about parts of their environment and use this to achieve their own goals. First coined by child psychologist David Wood (1988[1]), in 1990[2] “emulation” was taken up by Michael Tomasello to explain the findings of an earlier study on ape social learning (Tomasello et al., 1987[3]). The meaning of the term emulation has changed gradually since.

History of the term[]

In the original version, emulation referred to observers understanding objects in their potential to help them achieve desired results. They gained this understanding by seeing demonstrators achieving these very results with these objects. The actions performed by the demonstrators however were not copied, so it was concluded that observers learn “from the demonstration, that the tool may be used to obtain the food” (Tomasello et al., 1987).

In 1996[4], Tomasello redefined the term: “The individual observing and learning some affordances of the behavior of another animal, and then using what it has learned in devising its own behavioral strategies, is what I have called emulation learning. […] an individual is not just attracted to the location of another but actually learns something about the environment as a result of its behavior”. An even later definition further clarifies: “In emulation learning, learners see the movement of the objects involved and then come to some insight about its relevance to their own problems.” (Boesch & Tomasello, 1998[5]). Here animals learn some physics or causal relations of the environment. This does not necessarily involve a very complex understanding of abstract phenomena (as to what defines a “tool as a tool”). Emulation comprises a large span of cognitive complexity, from minimal cognitive complexity to very complex levels (e.g. see Custance et al. (1999)[6] for a version they call “object movement reenactment”, with regard to the lower range of complexity). Emulation was originally invented as a “cognitivist’s alternative” to associative learning(Tomasello, 1999), spanning learning about how things function and their “affordances” (Tomasello, 1999[7]) put to the use of achieving ones own goals: “Emulation learning in tool-use tasks seems to require the perception and understanding of some causal relations among objects” (Call & Tomasello, 1995 [8]). This necessarily involves some “insight” - a cognitive domain. To further highlight this point Call & Carpenter wrote in 2001[9]: “it would be a harder task to teach robots to emulate than it is already to teach them to imitate”.

Current views[]

Recently, Huang & Chaman (2005 [10]) have summarized the different connotations of the term that are currently being discussed. These versions are: "end state emulation", "goal emulation", "object movement reenactment", and "emulation via affordance learning". In their words: end state emulation "the presence of an end result motivates an observer to replicate the result without explicitly encoding it in relation to the model’s goal". In goal emulation, "an observer attributes a goal to the model while attempting to devise his or her own strategy to reproduce the end result". In object movement reenactment "when an observer sees an object or its parts move, and that movement leads to a salient outcome, seeing the object movement might motivate the observer to reproduce the outcome". Emulation via affordance learning "refers to a process whereby an observer detects stimulus consequences, such as dynamic properties and temporal–spatial causal relations of objects, through watching the object movements".

See also[]


References[]

  1. Wood, D. 1988. How children think and learn. London: Basil Blackwell.
  2. Tomasello, M. 1990. Cultural transmission in the tool use and communicatory signaling of chimpanzees? In: "Language" and intelligence in monkeys and apes: Comparative developmental perspectives (Ed. by Parker, S. T. & Gibson, K. R.), pp. 274-311. New York, NY, USA: Cambridge University Press.
  3. Tomasello, M., Davis-Dasilva, M., Camak, L. & Bard, K. 1987. Observational learning of tool use by young chimpanzees. Human evolution, 2, 175-183.
  4. Tomasello, M. 1996. Do apes ape? In: Social learning in animals: The roots of culture (Ed. by Heyes, C. M. & Galef, B. G., Jr.), pp. 319-346. San Diego, CA, USA: Academic Press, Inc.
  5. Boesch, C. & Tomasello, M. 1998. Chimpanzee and human cultures. Current Anthropology, 39, 591-614.
  6. Custance, D. M., Whiten, A. & Fredman, T. 1999. Social learning of an artificial fruit task in capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 113, 13-23.
  7. Tomasello, M. 1999. Emulation learning and cultural learning. Behavioural and Brain Sciences, 21, 703-704.
  8. Call, J. & Tomasello, M. 1995. Use of social information in the problem solving of orangutans (Pongo pygmaeus) and human children (Homo sapiens). Journal of Comparative Psychology, 109, 308-320.
  9. Call, J. & Carpenter, M. 2001. Three sources of information in social learning. In: Imitation in Animals and artifacts (Ed. by Dautenkahn, K.): MIT Press.
  10. Huang, C.-T. & Charman, T. 2005 Gradations of Emulation Learning in Infants' Imitation of Actions on Objects. Journal of Experimental Child Psychology 92, 276-302

Further reading[]

Learning
Types of learning
Avoidance conditioning | Classical conditioning | Confidence-based learning | Discrimination learning | Emulation | Experiential learning | Escape conditioning | Incidental learning |Intentional learning | Latent learning | Maze learning | Mastery learning | Mnemonic learning | Nonassociative learning | Nonreversal shift learning | Nonsense syllable learning | Nonverbal learning | Observational learning | Omission training | Operant conditioning | Paired associate learning | Perceptual motor learning | Place conditioning | Probability learning | Rote learning | Reversal shift learning | Second-order conditioning | Sequential learning | Serial anticipation learning | Serial learning | Skill learning | Sidman avoidance conditioning | Social learning | Spatial learning | State dependent learning | Social learning theory | State-dependent learning | Trial and error learning | Verbal learning 
Concepts in learning theory
Chaining | Cognitive hypothesis testing | Conditioning | Conditioned responses | Conditioned stimulus | Conditioned suppression | Constant time delay | Counterconditioning | Covert conditioning | Counterconditioning | Delayed alternation | Delay reduction hypothesis | Discriminative response | Distributed practice |Extinction | Fast mapping | Gagné's hierarchy | Generalization (learning) | Generation effect (learning) | Habits | Habituation | Imitation (learning) | Implicit repetition | Interference (learning) | Interstimulus interval | Intermittent reinforcement | Latent inhibition | Learning schedules | Learning rate | Learning strategies | Massed practice | Modelling | Negative transfer | Overlearning | Practice | Premack principle | Preconditioning | Primacy effect | Primary reinforcement | Principles of learning | Prompting | Punishment | Recall (learning) | Recency effect | Recognition (learning) | Reconstruction (learning) | Reinforcement | Relearning | Rescorla-Wagner model | Response | Reinforcement | Secondary reinforcement | Sensitization | Serial position effect | Serial recall | Shaping | Stimulus | Reinforcement schedule | Spontaneous recovery | State dependent learning | Stimulus control | Stimulus generalization | Transfer of learning | Unconditioned responses | Unconditioned stimulus 
Animal learning
Cat learning | Dog learning  Rat learning 
Neuroanatomy of learning
Neurochemistry of learning
Adenylyl cyclase  
Learning in clinical settings
Applied Behavior Analysis | Behaviour therapy | Behaviour modification | Delay of gratification | CBT | Desensitization | Exposure Therapy | Exposure and response prevention | Flooding | Graded practice | Habituation | Learning disabilities | Reciprocal inhibition therapy | Systematic desensitization | Task analysis | Time out 
Learning in education
Adult learning | Cooperative learning | Constructionist learning | Experiential learning | Foreign language learning | Individualised instruction | Learning ability | Learning disabilities | Learning disorders | Learning Management | Learning styles | Learning theory (education) | Learning through play | School learning | Study habits 
Machine learning
Temporal difference learning | Q-learning 
Philosophical context of learning theory
Behaviourism | Connectionism | Constructivism | Functionalism | Logical positivism | Radical behaviourism 
Prominant workers in Learning Theory|-
Pavlov | Hull | Tolman | Skinner | Bandura | Thorndike | Skinner | Watson 
Miscellaneous|-
Category:Learning journals | Melioration theory 
edit
This page uses Creative Commons Licensed content from Wikipedia (view authors).
Advertisement