Wikia

Psychology Wiki

Thermic effect of food

Talk0
34,135pages on
this wiki

Redirected from Diet-induced thermogenesis

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


Thermic effect of food, or TEF in shorthand, is the amount of energy expenditure above the resting metabolic rate due to the cost of processing food for use and storage.[1] Simply, it's the energy used in digestion, absorption and distribution of nutrients.[2] It is one of the components of metabolism along with resting metabolic rate and the exercise component. Two other terms commonly used to describe the thermic effect of food are dietary induced thermogenesis (DIT) and specific dynamic action (SDA). A commonly used estimate of the thermic effect of food is about 10% of one's caloric intake, though the effect varies substantially for different food components. For example, dietary fat is very easy to process and has very little thermic effect, while protein is hard to process and has a much larger thermic effect.[3]

Factors that affect the thermic effect of foodEdit

The thermic effect of food is increased by both aerobic training of sufficient duration and intensity and by anaerobic weight training. However, the increase is marginal, amounting to 7-8 cal per hour.[1] The primary determinants of daily TEF are the quantity and composition of the food ingested.

Although some believe that TEF is reduced in obesity, discrepant results and inconsistent research methods have failed to validate such claims.[4]

Types of foodsEdit

The thermic effect of food is the energy required for digestion, absorption, and disposal of ingested nutrients. Its magnitude depends on the composition of the food consumed:

  • Carbohydrates: 5 to 15 % of the energy consumed
  • Protein: 20 to 35%
  • Fats: at most 5 to 15 %[5]

Raw celery and grapefruit are often claimed to have negative caloric balance (requiring more energy to digest than recovered from the food), presumably because the thermic effect is greater than the caloric content due to the high fibre matrix that must be unraveled to access their carbohydrates. However, there has been no research carried out to test this hypothesis and a significant amount of the thermic effect depends on the insulin sensitivity of the individual, with more insulin-sensitive individuals having a significant effect while individuals with increasing resistance have negligible to zero effects.[6][7]

The Functional Food Centre at Oxford Brookes University conducted a study into the effects of chilli and medium-chain triglycerides (MCT) on Diet Induced Thermogenesis (DIT). They concluded that "adding chilli and MCT to meals increases DIT by over 50 % which over time may accumulate to help induce weight loss and prevent weight gain or regain".[8]

Australia's Human Nutrition conducted a study on the effect of meal content in lean women's diets on the thermic effect of food and found that the inclusion of an ingredient containing increased soluble fibre and amylose did not reduce spontaneous food intake but rather was associated with higher subsequent energy intakes despite its reduced glycaemic and insulinemic effects.[9]

Measuring TEFEdit

The thermic effect of food should be measured for greater than or equal to five hours.[10]

The American Journal of Clinical Nutrition published that TEF lasts beyond 6 hours for the majority of people.[10]

Processed foods and TEFEdit

Research has found that the thermic effect of food contributes to the fact that calories may not all be equal in terms of weight gain. In one study, seventeen subjects ate, on two different days, two bread-and-cheese sandwiches that were the same in terms of calories (the subjects were free to choose either 600 or 800 kcal meals), but one was ″whole food″ (a multi-grain bread, containing whole sunflower seeds and whole-grain kernels, with cheddar cheese), while the other was ″processed food″ (white bread and a processed cheese product). For each subject, the researchers measured the extra energy, beyond that due to the basal metabolic rate, that the subject expended in the six hours following the consumption of the meal; that energy divided by the energy content of the meal was (after multiplying by 100) reported as the percent DIT coefficient. The average percent DIT coefficient for the ″whole food″ sandwiches was (19.9±2.5)%, while for the ″processed food″ sandwiches, it was (10.7 ±1.7)%—a difference of a factor of 2. When the DIT values are subtracted from the total meal energy, it follows that the subjects obtained 9.7% more net energy from the ″processed-food″ meal than from the ″whole-food″ one.[11]

ReferencesEdit

  1. 1.0 1.1 Denzer, CM, JC Young (2003 September). The effect of resistance exercise on the thermic effect of food.. International Journal of Sport Nutrition and Exercise Metabolism 13 (3): 396–402.
  2. Edward F. Goljan (2013). Rapid Review Pathology, Elsevier Health Sciences.
  3. Christensen, Peter. "What is the thermic effect of food?". Retrieved March 28, 2005.
  4. DOI:10.1301/002966402320289359
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  5. http://www.jacn.org/content/23/5/373.long
  6. PMID 1541675 (PMID 1541675)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  7. PMID 10643689 (PMID &query_hl=14&itool=pubmed_docsum 10643689 )
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  8. PMID 23179202 (PMID 23179202)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  9. JPMID 17164830 (PMID 17164830)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  10. 10.0 10.1 PMID 8561055 (PMID &query_hl=14&itool=pubmed_docsum 8561055 )
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  11. DOI:10.3402/fnr.v54i0.5144
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand

Template:Food science Template:Cellular respiration


Citric Acid Cycle Metabolic Pathway
Oxaloacetate Malate Fumarate Succinate Succinyl-CoA
Oxaloacetate wpmp S-malate wpmp Fumarate wpmp Succinate wpmp Succinyl-CoA wpmp
Biochem reaction arrow reverse NNYY horiz med Biochem reaction arrow reverse NNYN horiz med Biochem reaction arrow reverse NNYY horiz med Biochem reaction arrow reverse NNYY horiz med
Acetyl-CoA NADH + H+ NAD+ H2O FADH2 FAD CoA + ATP(GTP) Pi + ADP(GDP)
Acetyl co-A wpmp + H2O Biochem reaction arrow special 1 Biochem reaction arrow special 2 NADH + H+ + CO2
CoA NAD+
Citrate wpmp H2O Cis-Aconitate wpmp H2O Threo-Ds-isocitrate wpmp NAD(P)+ NAD(P)H + H+ Oxalosuccinate wpmp CO2 2-oxoglutarate wpmp
Biochem reaction arrow foward NYNN horiz med Biochem reaction arrow foward YNNN horiz med Biochem reaction arrow foward YYNN horiz med Biochem reaction arrow foward NYNN horiz med
Citrate cis-Aconitate Isocitrate Oxalosuccinate α-Ketoglutarate


This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki