Fandom

Psychology Wiki

Decarboxylases

34,203pages on
this wiki
Add New Page
Talk0 Share

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


This article needs rewriting to enhance its relevance to psychologists..
Please help to improve this page yourself if you can..


Carboxy-lyases, also known as decarboxylases, are carbon-carbon lyases that add or remove a carboxyl group from organic compounds. These enzymes catalyze the decarboxylation of amino acids, beta-keto acids and alpha-keto acids[1].

Classification and nomenclatureEdit

Carboxy-lyases are categorized under EC number 4.1.1. [2] Usually, they are named after the substrate whose decarboxylation they catalyze, for example Pyruvate decarboxylase catalyzes the decarboxylation of Pyruvate

ExamplesEdit

See alsoEdit

External linksEdit


ReferencesEdit

  • Acevedo, S. F., Pfankuch, T., Ohtsu, H., & Raber, J. (2006). Anxiety and cognition in female histidine decarboxylase knockout (Hdc-super(-/-)) mice: Behavioural Brain Research Vol 168(1) Mar 2006, 92-99.
  • Akbarian, S., & Huang, H.-S. (2006). Molecular and cellular mechanisms of altered GAD1/ GAD67 expression in schizophrenia and related disorders: Brain Research Reviews Vol 52(2) Sep 2006, 293-304.
  • Akbarian, S., & Jones, E. G. (1995). "Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics": Reply: Archives of General Psychiatry Vol 52(4) Apr 1995, 277-278.
  • Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., & et al. (1995). Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics: Archives of General Psychiatry Vol 52(4) Apr 1995, 258-266.
  • Altier, H., Moldes, M., & Monti, J. M. (1975). The actions of dihydroxyphenylalanine and dihydroxyphenylserine on the sleep-wakefulness cycle of the rat after peripheral decarboxylase inhibition: British Journal of Pharmacology Vol 54(1) May 1975, 101-106.
  • Bagnoli, P., & et al. (1982). Effects of early monocular deprivation on choline acetyltransferase and glutamic acid decarboxylase in pigeon visual Wulst: Brain Research Vol 247(2) Sep 1982, 289-302.
  • Bannai, M., Ichikawa, M., Nishihara, M., & Takahashi, M. (1998). Effect of injection of antisense oligodeoxynucleotides of GAD isozymes into rat ventromedial hypothalamus on food intake and locomotor activity: Brain Research Vol 784(1-2) Feb 1998, 305-315.
  • Bartolome, J. V., Bartolome, M. B., Daltner, L. A., Evans, C. J., & et al. (1986). Effects of !b-endorphin on ornithine decarboxylase in tissues of developing rats: A potential role for this endogenous neuropeptide in the modulation of tissue growth: Life Sciences Vol 38(25) Jun 1986, 2355-2362.
  • Bartolome, J. V., Johnston, J. G., & Schanberg, S. M. (1994). The inhibition of liver ornithine decarboxylase expression in neonatal rats by maternal separation or CNS !b-endorphin is independent of the pituitary: Life Sciences Vol 54(10) 1994, 679-686.
  • Billings, L. M., & Marshall, J. F. (2004). Glutamic Acid Decarboxylase 67 mRNA Regulation in Two Globus Pallidus Neuron Populations by Dopamine and the Subthalamic Nucleus: Journal of Neuroscience Vol 24(12) Mar 2004, 3094-3103.
  • Borelli, K. G., Ferreira-Netto, C., & Brandao, M. L. (2006). Distribution of Fos immunoreactivity in the rat brain after freezing or escape elicited by inhibition of glutamic acid decarboxylase or antagonism of GABA-A receptors in the inferior colliculus: Behavioural Brain Research Vol 170(1) Jun 2006, 84-93.
  • Borglum, A. D., Hampson, M., Kjeldsen, T. E., Muir, W., Murray, V., Ewald, H., et al. (2001). Dopa decarboxylase genotypes may influence age at onset of schizophrenia: Molecular Psychiatry Vol 6(6) Nov 2001, 712-717.
  • Borison, R. L., Mosnaim, A. D., & Sabelli, H. C. (1974). Biosynthesis of brain 2-phenylethylamine: Influence of decarboxylase inhibitors and d-amphetamine: Life Sciences Vol 15(10) Nov 1974, 1837-1848.
  • Brabant, C., Quertemont, E., Anaclet, C., Lin, J.-S., Ohtsu, H., & Tirelli, E. (2007). The psychostimulant and rewarding effects of cocaine in histidine decarboxylase knockout mice do not support the hypothesis of an inhibitory function of histamine on reward: Psychopharmacology Vol 190(2) Feb 2007, 251-263.
  • Carter, R. B., & Appel, J. B. (1976). Blockade of the behavioral effects of 5-HTP by the decarboxylase inhibitor Ro 4-4602: Pharmacology, Biochemistry and Behavior Vol 4(4) Apr 1976, 407-409.
  • Clayton, P. T., Surtees, R. A. H., DeVille, C., Hyland, K., & Heales, S. J. R. (2003). Neonatal epileptic encephalopathy: Lancet Vol 361(9369) May 2003, 1614.
  • Costa, E., Davis, J. M., Dong, E., Grayson, D. R., Guidotti, A., Tremolizzo, L., et al. (2004). A GABAergic Cortical Deficit Dominates Schizophrenia Pathophysiology: Critical Reviews in Neurobiology Vol 16(1-2) 2004, 1-23.
  • Cowen, P. J., Green, A. R., Nutt, D. J., & Martin, I. L. (1981). Ethyl !b-carboline carboxylate lowers seizure threshold and antagonizes flurazepam-induced sedation in rats: Nature Vol 290(5801) Mar 1981, 54-55.
  • da Silveira Andrade da Costa, B. L., & Hokoc, J. N. (2003). Coexistence of GAD-65 and GAD-67 with tyrosine hydroxylase and nitric oxide synthase in amacrine and interplexiform cells of the primate, Cebus apella: Visual Neuroscience Vol 20(2) Mar-Apr 2003, 153-163.
  • De Luca, V., Muglia, P., Masellis, M., Dalton, E. J., Wong, G. W. H., & Kennedy, J. L. (2004). Polymorphisms in glutamate decarboxylase genes: Analysis in schizophrenia: Psychiatric Genetics Vol 14(1) Mar 2004, 39-42.
  • Dugast-Darzacq, C., Egloff, S., & Weber, M. J. (2004). Cooperative dimerization of the POU domain protein Brn-2 on a new motif activates the neuronal promoter of the human aromatic L-amino acid decarboxylase gene: Molecular Brain Research Vol 120(2) Jan 2004, 151-163.
  • Edery, H., & Gottesfeld, Z. (1975). The g-aminobutyricacid (GABA) system in rat cerebellum during cannabinoid-induced cataleptoid state: British Journal of Pharmacology Vol 54(3) Jul 1975, 406-408.
  • Edmonds, D. E. (1975). The effect of alpha-methyl-p-tyrosine methyl ester on temporal summation in the neural substrate for the reinforcement effect in self-stimulation: Dissertation Abstracts International.
  • Fatemi, S. H., Halt, A. R., Stary, J. M., Kanodia, R., Schulz, S. C., & Realmuto, G. R. (2002). Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices: Biological Psychiatry Vol 52(8) Oct 2002, 805-810.
  • Fehr, C., Rademacher, B. L. S., & Buck, K. J. (2003). Evaluation of the glutamate decarboxylase genes gad 1 and gad 2 as candidate genes for acute ethanol withdrawal severity in mice: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 27(3) May 2003, 467-472.
  • Gage, F. H., & Olton, D. S. (1976). L -dopa reduces hyperreactivity induced by septal lesions in rats: Behavioral Biology Vol 17(2) Jun 1976, 213-218.
  • Gaitonde, M. K., & Festing, M. F. (1976). Brain glutamic acid decarboxylase and open field activity in ten inbred strains of mice: Brain Research Vol 103(3) 1976, 617-621.
  • Gaughran, F., Howes, O. D., Chrisman, L., & Vincent, A. (2005). Serum glutamic acid decarboxylase 65 antibody levels in people with schizophrenia and their families: Schizophrenia Research Vol 73(2-3) Mar 2005, 379-381.
  • Gierdalski, M., Jablonska, B., Siucinska, E., Lech, M., Skibinska, A., & Kossut, M. (2001). Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning: Cerebral Cortex Vol 11(9) Sep 2001, 806-815.
  • Goodale, D. B., & Moore, K. E. (1976). A comparison of the effects of decarboxylase inhibitors on L-dopa-induced circling behavior and the conversion of dopa to dopamine in the brain: Life Sciences Vol 19(5) Sep 1976, 701-706.
  • Goodman, A. B. (1996). Retinoid dysregulation may result in abnormal expression of glutamic acid decarboxylase in schizophrenia: Archives of General Psychiatry Vol 53(7) Jul 1996, 653.
  • Gronan, R. J. (1975). Time and dose influences on the behavioral effects of L-DOPA and 5-hydroxytryptophan after inhibition of extracerebral decarboxylase: Pharmacology, Biochemistry and Behavior Vol 3(2) Mar-Apr 1975, 161-166.
  • Guidotti, A., Auta, J., Davis, J. M., Di-Giorgi-Gerevini, V., Dwivedi, Y., Grayson, D. R., et al. (2002). "Decrease in reelin and glutamic acid decarboxylase-sub-6-sub-7 (GAD-sub-6-sub-7) expression in schizophrenia and bipolar disorder: A postmortem brain study": Erratum: Archives of General Psychiatry Vol 59(1) Jan 2002, 12.
  • Guidotti, A., Auta, J., Davis, J. M., Gerevini, V. D., Dwivedi, Y., Grayson, D. R., et al. (2000). Decrease in reelin and glutamic acid decarboxylase-sub-6-sub-7 expression in schizophrenia and bipolar disorder: A postmortem brain study: Archives of General Psychiatry Vol 57(11) Nov 2000, 1061-1069.
  • Haenlein, M., Caul, W. F., & Barrett, R. J. (1983). Discrimination of serotonergic drugs is unaltered in rats prenatally exposed to ethanol: Neurobehavioral Toxicology & Teratology Vol 5(4) Jul-Aug 1983, 475-478.
  • Handelmann, G. E., & et al. (1983). Effects of time and experience on hippocampal neurochemistry after damage to the CA3 subfield: Pharmacology, Biochemistry and Behavior Vol 18(4) Apr 1983, 551-561.
  • Hao, S., Mata, M., Wolfe, D., Glorioso, J. C., & Fink, D. J. (2005). Gene Transfer of Glutamic Acid Decarboxylase Reduces Neuropathic Pain: Annals of Neurology Vol 57(6) Jun 2005, 914-918.
  • Hao, S., Mata, M., Wolfe, D., Huang, S., Glorioso, J. C., & Fink, D. J. (2005). Gene transfer of glutamic acid decarboxylase reduces neuropathic pain: Correction: Annals of Neurology Vol 58(5) Nov 2005, 818.
  • Hashimoto, T., & Lewis, D. A. (2006). BDNF Val66Met Polymorphism and GAD-sub-6-sub-7 mRNA Expression in the Prefrontal Cortex of Subjects With Schizophrenia: American Journal of Psychiatry Vol 163(3) Mar 2006, 534-537.
  • Hawi, Z., Foley, D., Kirley, A., McCarron, M., Fitzgerald, M., & Gill, M. (2001). Dopa decarboxylase gene polymorphisms and attention deficit hyperactivity disorder (ADHD): No evidence for association in the Irish population: Molecular Psychiatry Vol 6(4) Jul 2001, 420-424.
  • Heckers, S., Benes, F., & Tamminga, C. A. (2005). Images in Neuroscience: American Journal of Psychiatry Vol 162(3) Mar 2005, 450.
  • Heckers, S., Stone, D., Walsh, J., Shick, J., Koul, P., & Benes, F. M. (2002). Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia: Archives of General Psychiatry Vol 59(6) Jun 2002, 521-529.
  • Ikemoto, K. (2004). Significance of human striatal D-neurons: Implications in neuropsychiatric functions: Neuropsychopharmacology Vol 29(4) Apr 2004, 429-434.
  • Iversen, L. L., Bird, E. D., Mackay, A. V., & Rayner, C. N. (1974). Analysis of glutamate decarboxylase in post-mortem tissue in Huntington's chorea: Journal of Psychiatric Research Vol 11 1974, 255-256.
  • Jiao, Y., Zhang, C., Yanagawa, Y., & Sun, Q.-Q. (2006). Major Effects of Sensory Experiences on the Neocortical Inhibitory Circuits: Journal of Neuroscience Vol 26(34) Aug 2006, 8691-8701.
  • Kaiya, H., Namba, M., Yoshida, H., & Nakamura, S. (1982). Plasma glutamate decarboxylase activity in neuropsychiatry: Psychiatry Research Vol 6(3) Jun 1982, 335-343.
  • Kaufman, D. L., Clare-Salzler, M., Tian, J., Forsthuber, T., & et al. (1993). Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes: Nature Vol 366(6450) Nov 1993, 69-72.
  • Kindlundh, A. M. S., Lindblom, J., & Nyberg, F. (2003). Chronic administration with nandrolone decanoate induces alterations in the gene-transcript content of dopamine D-sub-1- and D-sub-2-receptors in the rat brain: Brain Research Vol 979(1-2) Jul 2003, 37-42.
  • Kuriyama, K., & Yoneda, Y. (1978). Morphine induced alterations of !g-aminobutyric acid and taurine contents and {l}-glutamate decarboxylase activity in rat spinal cord and thalamus: Possible correlates with analgesic action of morphine: Brain Research Vol 148(1) Jun 1978, 163-179.
  • Lariviere, K., Samia, M., Lister, A., Van Der Kraak, G., & Trudeau, V. L. (2005). Sex steroid regulation of brain glutamic acid decarboxylase (GAD) mRNA is season-dependent and sexually dimorphic in the goldfish Carassius auratus: Molecular Brain Research Vol 141(1) Nov 2005, 1-9.
  • Lee, D. E., & Tobin, A. J. (1995). Reduced inhibitory capacity in prefrontal cortex of schizophrenics: Archives of General Psychiatry Vol 52(4) Apr 1995, 267-268.
  • Lewis, D. A. (1995). Neural circuitry of the prefrontal cortex in schizophrenia: Archives of General Psychiatry Vol 52(4) Apr 1995, 269-273.
  • Lopez-Real, A., Rodriguez-Pallares, J., Guerra, M. J., & Labandeira-Garcia, J. L. (2003). Localization and functional significance of striatal neurons immunoreactive to aromatic {L}-amino acid decarboxylase or tyrosine hydroxylase in rat Parkinsonian models: Brain Research Vol 969(1-2) Apr 2003, 135-146.
  • Lotti, V. J., & Clark, C. (1974). Carbidopa attenuation of L-dopa emesis in dogs: Evidence for a cerebral site of action outside the blood-brain barrier: European Journal of Pharmacology Vol 25(3) Mar 1974, 322-325.
  • Magyar, R. L., Gillin, J. C., & Wyatt, R. J. (1978). Tolerance to the increased locomotor activity produced by l-5-hydroxytryptophan following peripheral decarboxylase inhibition in mice: Psychopharmacology Vol 56(3) 1978, 343-350.
  • Matsui-Yuasa, I., & Otani, S. (1992). Lithium in polyamine metabolism: Lithium Vol 3(4) Nov 1992, 231-238.
  • Meguro, K.-i., Yanai, K., Sakai, N., Sakurai, E., & et al. (1995). Effects of thioperamide, a histamine H-sub-3 antagonist, on the step-through passive avoidance response and histidine decarboxylase activity in senescence-accelerated mice: Pharmacology, Biochemistry and Behavior Vol 50(3) Mar 1995, 321-325.
  • Meredith, G. E., Wouterlood, F. G., & Pattiselanno, A. (1990). Hippocampal fibers make synaptic contacts with glutamate decarboxylase-immunoreactive neurons in the rat nucleus accumbens: Brain Research Vol 513(2) Apr 1990, 329-334.
  • Minano, F. J., McMillen, B. A., & Myers, R. D. (1989). Interaction of tetrahydropapaveroline with inhibition of dopa-decarboxylase by Ro 4-4602 in brain: Effects on alcohol drinking in the rat: Alcohol Vol 6(2) Mar-Apr 1989, 133-137.
  • Nagy, L., & Hiripi, L. (2002). Role of tyrosine, DOPA and decarboxylase enzymes in the synthesis of monoamines in the brain of the locust: Neurochemistry International Vol 41(1) Jul 2002, 9-16.
  • Navarro Becerra, N., & Munaro, N. I. (1996). Glutamic acid decarboxylase activity of the olfactory bulb in male rats is influenced by olfactory stimuli and hormonal status: Neuropharmacology Vol 35(1) Jan 1996, 57-61.
  • Nistico, G., & et al. (1982). Effects of apomorphine on glutamate decarboxylase activity in chick paleostriatum augmentatum: Neuropharmacology Vol 21(9) Sep 1982, 847-850.
  • Oltmans, G. A., Lorden, J. F., & Beales, M. (1985). Lesions of the inferior olive increase glutamic acid decarboxylase activity in the deep cerebellar nuclei of the rat: Brain Research Vol 347(1) Nov 1985, 154-158.
  • Pauk, J., Kuhn, C., Field, T. M., & Schanberg, S. M. (1986). Positive effects of tactile versus kinesthetic or vestibular stimulation on neuroendocrine and ODC activity in maternally-deprived rat pups: Life Sciences Vol 39(22) Dec 1986, 2081-2087.
  • Persson, S.-A. (1977). The effect of LSD and 2-bromo LSD on the striatal dopa accumulation after decarboxylase inhibition in rats: European Journal of Pharmacology Vol 43(1) May 1977, 73-83.
  • Pradhan, S. N., Battacharyya, A. K., & Pradhan, S. (1978). Serotoninergic manipulation of the behavioral effects of cocaine in rats: Communications in Psychopharmacology Vol 2(6) 1978, 481-486.
  • Proll, M. A., & Morgan, W. W. (1982). Adaptation of retinal dopamine neuron activity in light-adapted rats to darkness: Brain Research Vol 241(2) Jun 1982, 359-361.
  • Ricci, L. A., Grimes, J. M., Knyshevski, I., & Melloni, R. H. (2005). Repeated cocaine exposure during adolescence alters glutamic acid decarboxylase-65 (GAD-sub-6-sub-5) immunoreactivity in hamster brain: Correlation with offensive aggression: Brain Research Vol 1035(2) Feb 2005, 131-138.
  • Rodriguez, C., Guillamon, A., Pinos, H., & Collado, P. (2004). Postpartum changes in the GABAergic system in the bed nucleus of the accessory olfactory tract: Neurochemistry International Vol 44(3) Feb 2004, 179-183.
  • Root, A. R., Nucci, N. V., Sanford, J. D., Rubin, B. S., Trudeau, V. L., & Sower, S. A. (2005). In situ Characterization of Gonadotropin-Releasing Hormone-I, -III, and Glutamic Acid Decarboxylase Expression in the Brain of the Sea Lamprey, Petromyzon marinus: Brain, Behavior and Evolution Vol 65(1) Jan 2005, 60-70.
  • Sayers, A. C., & Handley, S. L. (1974). Catalepsy induced by a-methyl-p-tyrosine and d-amphetamine: The role of catecholamine metabolism: Psychopharmacologia Vol 34(4) 1974, 325-334.
  • Schanberg, S. M., Ingledue, V. F., Lee, J. Y., Hannun, Y. A., & Bartolome, J. V. (2003). PKCalpha mediates maternal touch regulation of growth-related gene expression in infant rats: Neuropsychopharmacology Vol 28(6) 2003, 1026-1030.
  • Schneider, E., Fischer, P. A., Jacobi, P., & Maxion, H. (1973). Comparison of effects of levodopa and the combination of levodopa and a decarboxylase inhibitor in Parkinson's disease: Archiv fur Psychiatrie und Nervenkrankheiten Vol 217(1) 1973, 95-112.
  • Sida, P., Netopilova, M., & Klenerova, V. (1998). Activity of decarboxylase of glutamic acid in various brain regions of Lewis rats after amphetamine or stress: Homeostasis in Health and Disease Vol 39(1-2) Nov 1998, 75-76.
  • Slotkin, T. A., Freibaum, B. D., Tate, C. A., Thillai, I., Ferguson, S. A., Cada, A. M., et al. (2003). Long-lasting CNS effects of a short-term chemical knockout of ornithine decarboxylase during development: Nicotinic cholinergic receptor upregulation and subtle macromolecular changes in adulthood: Brain Research Vol 981(1-2) Aug 2003, 118-125.
  • Spillane, J. A., & et al. (1977). Selective vulnerability of neurones in organic dementia: Nature Vol 266(5602) Apr 1977, 558-559.
  • Spissu, A., & et al. (1975). Treatment of Sydenham's chorea with a combination of L-Dopa and a peripheral Dopa decarboxylase inhibitor: Psychopharmacologia Vol 44(3) 1975, 311-312.
  • Stork, O., Ji, F.-Y., Kaneko, K., Stork, S., Yoshinobu, Y., Moriya, T., et al. (2000). Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65: Brain Research Vol 865(1) May 2000, 45-58.
  • Su, R.-B., Wei, X.-L., Zheng, J.-Q., Liu, Y., Lu, X.-Q., & Li, J. (2004). Anticonvulsive effect of agmatine in mice: Pharmacology, Biochemistry and Behavior Vol 77(2) Feb 2004, 345-349.
  • Tisch, R., Yang, X.-d., Singer, S. M., Liblau, R. S., & et al. (1993). Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice: Nature Vol 366(6450) Nov 1993, 72-75.
  • Trojanowski, J. Q., & Arnold, S. E. (1995). In pursuit of the molecular neuropathology of schizophrenia: Archives of General Psychiatry Vol 52(4) Apr 1995, 274-276.
  • Tunnicliff, G., & Ngo, T. T. (1977). Folic acid and the inhibition of brain L-glutamic decarboxylase: Experientia Vol 33(1) 1977, 67-68.
  • Turski, L., Cavalheiro, E. A., Sieklucka-Dziuba, M., Ikonomidou-Turski, C., & et al. (1986). Seizures produced by pilocarpine: Neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain: Brain Research Vol 398(1) Nov 1986, 37-48.
  • Ugryumov, M. V., Mel'nikova, V. I., Ershov, P. V., Balan, I. S., & Kalas, A. (2002). Non-Dopaminergic Neurons Expressing Dopamine Synthesis Enzymes: Differentiation and Functional Significance: Neuroscience and Behavioral Physiology Vol 32(3) May-Jun 2002, 299-307.
  • Van Praag, H. M., Korf, J., & Lequin, R. M. (1976). An unexpected effect of l-5-hydroxytryptophan-ethylester combined with a peripheral decarboxylase inhibitor on human serum prolactin: Psychopharmacology Communications Vol 2(5-6) 1976, 369-378.
  • Vazquez, A. J., & Krip, G. (1973). Interactions between amphetamine and serotonergic agents on cat's isolated cerebral cortex: Biological Psychiatry Vol 7(1) Aug 1973, 11-22.
  • Vazquez, A. J., & Sabelli, H. C. (1975). Potentiation of the central nervous system effects of DOPA by decarboxylase inhibition: Possible direct role of this neuroamino acid in brain mechanisms: Experimental Neurology Vol 46(1) Jan 1975, 44-56.
  • Viala, D., & Buser, P. (1974). Effects of a decarboxylase inhibitor on the Dopa and 5-HTP induced changes in the locomotor-like discharge pattern of rabbit hind limb nerves: Psychopharmacologia Vol 40(3) 1974, 225-233.
  • Yarlagadda, A., Helvink, B., Chou, C., & Clayton, A. H. (2007). Blood brain barrier: The role of GAD antibodies in psychiatry: Psychiatry Vol 4(6) Jun 2007, 57-59.




This page uses Creative Commons Licensed content from Wikipedia (view authors).

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki