Psychology Wiki

Conjoint measurement

34,203pages on
this wiki
Add New Page
Talk0 Share

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory

Conjoint measurement is the measurement of a variable that is made up of a combination of other variables which themselves affect the item being evaluated.

In the physical world measurement when combining two quantiities is often simply a matter of addition. The weight of two bricks for example is easily calculated. In psychology however the situation is often more complex and variables interact.

See alsoEdit


Achter, J. A. (1998). Investigating antecedents to the development of competence and fulfillment among intellectually gifted adolescents: The validity of conjointly applying above-level ability and preference assessment for early educational and career planning. Dissertation Abstracts International: Section B: The Sciences and Engineering.

  • Aiman-Smith, L., Scullen, S. E., & Barr, S. H. (2002). Conducting studies of decision making in organizational contexts: A tutorial for pollicy-capturing and other regression-based techniques: Organizational Research Methods Vol 5(4) Oct 2002, 388-414.
  • Alba, J. W., & Cooke, A. D. J. (2004). When Absence Begets Inference in Conjoint Analysis: Comment: Journal of Marketing Research Vol 41(4) Nov 2004, 382-387.
  • Allenby, G. M., Arora, N., & Ginter, J. L. (1995). Incorporating prior knowledge into the analysis of conjoint studies: Journal of Marketing Research Vol 32(2) May 1995, 152-162.
  • Allenby, G. M., & Ginter, J. L. (1995). Using extremes to design products and segment markets: Journal of Marketing Research Vol 32(4) Nov 1995, 392-403.
  • Anderson, N. H. (1971). An exchange on functional and conjoint measurement: Comment: Psychological Review Vol 78(5) Sep 1971, 457.
  • Anderson, N. H. (1971). An exchange on functional and conjoint measurement: Reply: Psychological Review Vol 78(5) Sep 1971, 458.
  • Bakken, D., & Frazier, C. L. (2006). Conjoint analysis: Understanding consumer decision making. Thousand Oaks, CA: Sage Publications, Inc.
  • Bontempo, R. N., Bottom, W. P., & Weber, E. U. (1997). Cross-cultural differences in risk perception: A model-based approach: Risk Analysis Vol 17(4) Aug 1997, 479-488.
  • Bouyssou, D., & Pirlot, M. (2002). Nontransive decomposable conjoint measurement: Journal of Mathematical Psychology Vol 46(6) Dec 2002, 677-703.
  • Bouyssou, D., & Pirlot, M. (2004). 'Additive difference' models without additivity and subtractivity: Journal of Mathematical Psychology Vol 48(4) Aug 2004, 263-291.
  • Bouyssou, D., & Pirlot, M. (2004). Preferences for multi-attributed alternatives: Traces, dominance, and numerical representations: Journal of Mathematical Psychology Vol 48(3) Jun 2004, 167-185.
  • Bradlow, E. T., Hu, Y., & Ho, T.-H. (2004). A Learning-Based Model for Imputing Missing Levels in Partial Conjoint Profiles: Journal of Marketing Research Vol 41(4) Nov 2004, 369-381.
  • Bradlow, E. T., Hu, Y., & Ho, T.-H. (2004). Modeling Behavioral Regularities of Consumer Learning in Conjoint Analysis: Reply: Journal of Marketing Research Vol 41(4) Nov 2004, 392-396.
  • Braithwaite, J. J., Perez-Aquino, K., & Townsend, M. (2004). In search of magnetic anomalies associated with haunt-type experiences: Pulses and patterns in dual time-synchronized measurements: Journal of Parapsychology Vol 68(2) Fal 2004, 255-288.
  • Butterworth, A., Sadler, L., Knowles, T. G., & Kestin, S. C. (2004). Evaluating possible indicators of insensibility and death in cetacea: Animal Welfare Vol 13(1) Feb 2004, 13-17.
  • Camm, J. D., Cochran, J. J., Curry, D. J., & Kannan, S. (2006). Conjoint optimization: An exact branch-and-bound algorithm for the share-of-choice problem: Management Science Vol 52(3) Mar 2006, 435-447.
  • Carroll, J. D., & Green, P. E. (1995). Psychometric methods in marketing research: I. Conjoint analysis: Journal of Marketing Research Vol 32(4) Nov 1995, 385-391.
  • Chan, F., Wang, M.-H., Thomas, K. R., Chan, C. C. H., Wong, D. W., Lee, G., et al. (2002). Conjoint Analysis in Rehabilitation Counseling Research: Rehabilitation Education Vol 16(2) 2002, 179-195.
  • Damon, R. Y., & Rouzies, D. (1999). Internal validity of conjoint analysis under alternative measurement procedures: Journal of Business Research Vol 46(1) Sep 1999, 67-81.
  • Danaher, P. J. (1997). Using conjoint analysis to determine the relative importance of service attributes measured in customer satisfaction surveys: Journal of Retailing Vol 73(2) Sum 1997, 235-260.
  • Dellaert, B. G. C., Arentze, T. A., Bierlaire, M., Borgers, A. W. J., & Timmermans, H. J. P. (1998). Investigating consumers' tendency to combine multiple shopping purposes and destinations: Journal of Marketing Research Vol 35(2) May 1998, 177-188.
  • Dellaert, B. G. C., Borgers, A. W. J., & Timmermans, H. J. P. (1997). Conjoint models of tourist portfolio choice: Theory and illustration: Leisure Sciences Vol 19(1) Jan-Mar 1997, 31-58.
  • Ding, M., Grewal, R., & Liechty, J. (2005). Incentive-Aligned Conjoint Analysis: Journal of Marketing Research Vol 42(1) Feb 2005, 67-82.
  • Dunn, J. C., & James, R. N. (2003). Signed difference analysis: Theory and application: Journal of Mathematical Psychology Vol 47(4) Aug 2003, 389-416.
  • Evans, R. H. (1996). An analysis of criterion variable reliability in conjoint analysis: Perceptual and Motor Skills Vol 82(3, Pt 1) Jun 1996, 988-990.
  • Flach, S. D., & Diener, A. (2004). Eliciting patients' preferences for cigarette and alcohol cessation: An application of conjoint analysis: Addictive Behaviors Vol 29(4) Jun 2004, 791-799.
  • Gan, C. E. (1993). A conjoint analysis of wetland-based recreation: A case study of Louisiana waterfowl hunting: Dissertation Abstracts International.
  • Green, P. E., Krieger, A. M., & Carroll, J. D. (1987). Conjoint analysis and multidimensional scaling: A complementary approach: Journal of Advertising Research Vol 27(5) Oct-Nov 1987, 21-27.
  • Haaijer, R., Kamakura, W., & Wedel, M. (2001). The "no-choice" alternative in conjoint choice experiments: International Journal of Market Research Vol 43(1) 2001, 93-106.
  • Heisterkamp, G., & Ware, R. C. (2002). Self-Movement and Conjoint Movement: Selbstpsychologie: Europaische Zeitschrift fur psychoanalytische Therapie und Forschung/ Self Psychology: European Journal for Psychoanalytic Therapy and Research Vol 3(10) 2002, 440-464.
  • Heller, J. (2003). Generalized factorizable automorphisms in n-component conjoint structures: Journal of Mathematical Psychology Vol 47(5-6) Oct-Dec 2003, 527-537.
  • Ho, Y.-X., Landy, M. S., & Maloney, L. T. (2008). Conjoint measurement of gloss and surface texture: Psychological Science Vol 19(2) Feb 2008, 196-204.
  • Hofstede, F., Kim, Y., & Wedel, M. (2002). Bayesian prediction in hybrid conjoint analysis: Journal of Marketing Research Vol 39(2) May 2002, 253-261.
  • Hubner, R., & Ellermeier, W. (1993). Additivity of loudness across critical bands: A critical test: Perception & Psychophysics Vol 54(2) Aug 1993, 185-189.
  • Jedidi, K., & Zhang, Z. J. (2002). Augmenting conjoint analysis to estimate consumer reservation price: Management Science Vol 48(10) Oct 2002, 1350-1368.
  • Jones, R. A. (1993). Modelling consumer preferences for campground design features and price using conjoint analysis: Dissertation Abstracts International.
  • Karabatsos, G., & Ullrich, J. R. (2002). Enumerating and testing conjoint measurement models: Mathematical Social Sciences Vol 43(3) Jul 2002, 485-504.
  • Krantz, D. H. (1964). Conjoint measurement: The Luce-Tukey axiomatization and some extensions: Journal of Mathematical Psychology 1(2) 1964, 248-277.
  • Krantz, D. H., & Tversky, A. (1971). An exchange on functional and conjoint measurement: Reply: Psychological Review Vol 78(5) Sep 1971, 458.
  • Luce, R. D. (1966). Two extensions of conjoint measurement: Journal of Mathematical Psychology 3(2) 1966, 348-370.
  • Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new type of fundamental measurement: Journal of Mathematical Psychology 1(1) 1964, 1-27.
  • Moskowitz, H., Itty, B., & Ewald, J. (2003). Teens on the Internet: Commercial application of a deconstructive analysis of 'teen zine' features: Journal of Consumer Behaviour Vol 2(3) Mar 2003, 296-310.
  • Mulye, R. (1998). An empirical comparison of three variants of the AHP and two variants of conjoint analysis: Journal of Behavioral Decision Making Vol 11(4) Dec 1998, 263-280.
  • Niebergall, A., & Schulz, U. (1996). The use of conjoint analysis to evaluate expert ratings in personnel selection: Zeitschrift fur Arbeits- und Organisationspsychologie Vol 40(1) 1996, 38-41.
  • Noell, G. H., & Gresham, F. M. (2001). A multiple-sequence variant of the multiple-baseline design: A strategy for analysis of sequence effects and treatment comparison: School Psychology Quarterly Vol 16(2) Sum 2001, 207-221.
  • Oppewal, H., Louviere, J. J., & Timmermans, H. J. P. (1994). Modeling hierarchical conjoint processes with integrated choice experiments: Journal of Marketing Research Vol 31(1) Feb 1994, 92-105.
  • Oppewal, H., Louviere, J. J., & Timmermans, H. J. P. (2000). Modifying conjoint methods to model managers' reactions to business environmental trends: An application to modeling retailer reactions to sales trends: Journal of Business Research Vol 50(3) Dec 2000, 245-257.
  • Paulson, J. A. (1991). Is psychological measurement empirically possible? : PsycCRITIQUES Vol 36 (12), Dec, 1991.
  • Pelton, T. W., & Bunderson, C. V. (2003). The Recovery of the Density Scale using a Stochastic Quasi-Realization of Additive Conjoint Measurement: Journal of Applied Measurement Vol 4(3) 2003, 269-281.
  • Picon, E. (2004). A Monte Carlo comparison of three metric conjoint segmentation methods: Psicologica Vol 25(2) 2004, 231-252.
  • Picon Prado, E., & Varela Mallou, J. (2000). Segmenting markets with conjoint analysis: An application to tourism: Psicothema Vol 12(Suppl2) 2000, 453-458.
  • Poortinga, W., Steg, L., Vlek, C., & Wiersma, G. (2003). Household preferences for energy-saving measures: A conjoint analysis: Journal of Economic Psychology Vol 24(1) Feb 2003, 49-64.
  • Prieto, G., & Delgado, A. R. (2003). Rasch-modelling: a test: Psicothema Vol 15(1) Feb 2003, 94-100.
  • Rao, V. R. (2004). Comments on Conjoint Analysis with Partial Profiles: Journal of Marketing Research Vol 41(4) Nov 2004, 388-389.
  • Roskies, R. (1965). A measurement axiomization for an essentially multiplicative representation of two factors: Journal of Mathematical Psychology 2(2) 1965, 266-276.
  • Rubin, D. B. (2004). Design and Modeling in Conjoint Analysis with Partial Profiles: Comment: Journal of Marketing Research Vol 41(4) Nov 2004, 390-391.
  • Ryan, M. (1999). Using conjoint analysis to take account of patient preferences and go beyond health outcomes: An application to in vitro fertilisation: Social Science & Medicine Vol 48(4) Feb 1999, 535-546.
  • Sandor, Z., & Wedel, M. (2002). Profile Construction in Experimental Choice Designs for Mixed Logit Models: Marketing Science Vol 21(4) Fal 2002, 455-475.
  • Sapede, C., & Girod, I. (2002). Willingness of adults in Europe to pay for a new vaccine: The application of discrete choice-based conjoint analysis: International Journal of Market Research Vol 44(4) 2002, 463-476.
  • Sethuraman, R., Kerin, R. A., & Cron, W. L. (2005). A field study comparing online and offline data collection methods for identifying product attribute preferences using conjoint analysis: Journal of Business Research Vol 58(5) May 2005, 602-610.
  • Shamir, M., & Shamir, J. (1995). Competing values in public opinion: A conjoint analysis: Political Behavior Vol 17(1) Mar 1995, 107-133.
  • Spoth, R., & Redmond, C. (1993). Identifying program preferences through conjoint analysis: Illustrative results from a parent sample: American Journal of Health Promotion Vol 8(2) Nov-Dec 1993, 124-133.
  • Srinivasan, V., & Park, C. S. (1997). Surprising robustness of the self-explicated approach to customer preference structure measurement: Journal of Marketing Research Vol 34(2) May 1997, 286-291.
  • Suck, R. (2001). The normal distribution derived from qualitative conditions: Journal of Mathematical Psychology Vol 45(2) Apr 2001, 370-388.
  • Toubia, O., Hauser, J. R., & Simester, D. I. (2004). Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis: Journal of Marketing Research Vol 41(1) Feb 2004, 116-131.
  • von Stefan Hoft, R. (2005). Review of ALASCA--A computer-based tool for decision-making and utility analysis: Zeitschrift fur Personalpsychologie Vol 4(2) 2005, 86-91.
  • Vriens, M., van der Scheer, H. R., Hoekstra, J. C., & Bult, J. R. (1998). Conjoint experiments for direct mail response optimization: European Journal of Marketing Vol 32(3-4) 1998, 323-339.
  • Weiner, J. L. (1994). Alternative conjoint analysis techniques: Implications for marketing research. Dissertation Abstracts International Section A: Humanities and Social Sciences.

External linksEdit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki