## FANDOM

34,203 Pages

In statistics, the Q test a nonparametric statistical test used for identification and rejection of outliers. This test should be used sparingly and never more than once in a data set. To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined:

Q = Qgap/Qrange

Where Qgap is the absolute difference between the outlier in question and the closest number to it. If Qcalculated > Qtable then reject the questionable point.

## TableEdit

 Number of values: 3 4 5 6 7 8 9 10 Q90%: 0.941 0.765 0.642 0.56 0.507 0.468 0.437 0.412 Q95%: 0.97 0.829 0.71 0.625 0.568 0.526 0.493 0.466

## ExampleEdit

For the data:

$0.189, 0.169, 0.187, 0.183, 0.186, 0.182, 0.181, 0.184, 0.181, 0.177$

Arranged in increasing order:

$0.169, 0.177, 0.181, 0.181, 0.182, 0.183, 0.184, 0.186, 0.187, 0.189$

Outlier is 0.169. Calculate Q:

$Q=\frac{\mathrm{gap}}{\mathrm{range}}=\frac{(0.177-0.169)}{(0.189-0.169)}=0.400.$

With 10 observations at 90% confidence, Qcalculated < Qtable. Therefore keep 0.169 at 90% confidence.