Psychology Wiki
Register
Advertisement

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


Cochlea
Cochlea-crosssection
Cross section of the cochlea.
Latin '
Gray's subject #232 1050
System
MeSH A09.246.631.246
[[Image:{{{Image2}}}|190px|center|]]
{{{Caption2}}}

The cochlea is the auditory portion of the inner ear. Its core component is the Organ of Corti, the sensory organ of hearing, which is distributed along the partition separating fluid chambers in the coiled tapered tube of the cochlea.

The name is from the Latin for snail, which is from the Greek kokhlias "snail, screw," from kokhlos "spiral shell,"(etymology) in reference to its coiled shape; the cochlea is coiled in most mammals, monotremes being the exceptions.

Anatomy[]

File:Cochlea.png

Structural diagram of the cochlea showing how fluid pushed in at the oval window moves, deflects the cochlear partition, and bulges back out at the round window.

Structures[]

The cochlea is a spiralled, hollow, conical chamber of bone. Its structures include:

  • the scala vestibuli (containing perilymph), which lies superior to the cochlear duct and abuts the oval window.
  • the scala tympani (containing perilymph), which lies inferior to the scala media and terminates at the round window.
  • the scala media (containing endolymph), which is the membranous cochlear duct containing the organ of Corti.
  • the helicotrema is the location where the scala tympani and the scala vestibuli merge
  • Reissner's membrane separates the scala vestibuli from the scala media.
  • The basilar membrane, a main structural element that determines the mechanical wave propagation properties of the cochlear partition, separates the scala media from the scala tympani.
  • The Organ of Corti is the sensory epithelium, a cellular layer on the basilar membrane, powered by the potential difference between the perilymph and the endolymph. It is lined with hair cells—sensory cells topped with hair-like structures called stereocilia.

Function[]

In brief: the cochlea is filled with a watery liquid, which moves in response to the vibrations coming from the middle ear via the oval window. As the fluid moves, thousands of "hair cells" are set in motion, and convert that motion to electrical signals that are communicated via neurotransmitters to many thousands of nerve cells. These primary auditory neurons transform the signals into electrical impulses known as action potentials, which travel along the auditory nerve to structures in the brainstem for further processing.

The stapes of the middle ear transmits to the fenestra ovalis (oval window) on the outside of the cochlea, which vibrates the perilymph (fluid) in the scala vestibuli (upper chamber of the cochlea).

This motion of perilymph in turn vibrates the endolymph in the scala media, the perilymph in the scala tympani, the basilar membrane, and organ of Corti, thus causing movements of the hair bundles of the hair cells, acoustic sensor cells that convert vibration into electrical potentials. The hair cells in the organ of Corti are tuned to certain sound frequencies[1], being responsive to high frequencies near the oval window and to low frequencies near the apex of the cochlea.

The hair cells are arranged in four rows in the organ of Corti along the entire length of the cochlear coil. Three rows consist of outer hair cells (OHCs) and one row consists of inner hair cells (IHCs). The inner hair cells provide the main neural output of the cochlea. The outer hair cells, instead, mainly receive neural input from the brain, which influences their motility as part of the cochlea’s mechanical pre-amplifier. The input to the OHC is from the olivary body via the medial olivocochlear bundle.

For very low frequencies (below 20Hz), the pressure waves propagate along the complete route of the cochlea - up scala vestibuli, around helicotrema and down scala tympani to the round window. Frequencies this low do not activate the organ of Corti and are below the threshold for hearing. Higher frequencies do not propagate to the helicotrema but are transmitted through the endolymph in the cochlear duct to the perilymph in the scala tympani.

A very strong movement of the endolymph due to very loud noise may cause hair cells to die. This is a common cause of partial hearing loss and is the reason why users of firearms or heavy machinery should wear earmuffs or earplugs.

Detailed anatomy[]

The walls of the hollow cochlea are made of bone, with a thin, delicate lining of epithelial tissue. This coiled tube is divided through most of its length by a membrane partition. Two fluid-filled spaces (scalae) are formed by this dividing membrane.

The fluid in both is called perilymph: a clear solution of electrolytes and proteins. The two scalae (fluid-filled chambers) communicate with each other through an opening at the top (apex) of the cochlea called the helicotrema, a common space that is the one part of the cochlea that lacks the lengthwise dividing membrane.

At the base of the cochlea each scala ends in a membrane that faces the middle ear cavity. The scala vestibuli ends at the oval window, where the footplate of the stapes sits. The footplate rocks when the ear drum moves the ossicular chain; sending the perilymph rippling with the motion, the waves moving away from footplate and towards helicotrema. Those fluid waves then continue in the perilymph of the scala tympani. The scala tympani ends at the round window, which bulges out when the waves reach it -providing pressure relief. This one-way movement of waves from oval window to round window occurs because the middle ear directs sound to the oval window, but shields the round window from being struck by sound waves from the external ear. It is important, because waves coming from both directions, from the round and oval window would cancel each other out. In fact, when the middle ear is damaged such that there is no tympanic membrane or ossicular chain, and the round window is oriented outward rather than set under a bit of a ledge in the round window niche, there is a maximal conductive hearing loss of about 60 dB.

The lengthwise partition that divides most of the cochlea is itself a fluid-filled tube, the third scalae. This central column is called the scala media or cochlear duct. Its fluid, endolymph, also contains electrolytes and proteins, but is chemically quite different from perilymph. Whereas the perilymph is rich in sodium salts, the endolymph is rich in potassium salts.

The cochlear duct is supported on three sides by a rich bed of capillaries and secretory cells (the stria vascularis), a layer of simple squamous epithelial cells (Reissner's membrane), and the basilar membrane, on which rests the receptor organ for hearing - the organ of Corti. The cochlear duct is almost as complex on its own as the ear itself.

The ear is a very active organ. Not only does the cochlea "receive" sound, it generates it. Some of the hair cells of the cochlear duct can change their shape enough to move the basilar membrane and produce sound. This process is important in fine tuning the ability of the cochlea to accurately detect differences in incoming acoustic information. The sound produced by the inner ear is called an otoacoustic emission (OAE), and can be recorded by a microphone in the ear canal. Otoacoustic emissions are important is some types of tests for hearing impairment.

Comparative physiology[]

The coiled form of cochlea is unique to mammals. In birds and in other non-mammalian vertebrates the compartment containing the sensory cells for hearing is occasionally also called “cochlea”, although it is not coiled up. Instead it forms a blind-ended tube, also called the cochlear duct. This difference apparently evolved in parallel with the differences in frequency range of hearing and in frequency resolution between mammals and non-mammalian vertebrates. Most bird species do not hear above 4–5 kHz, the currently known maximum being ~ 11 kHz in the barn owl. Some marine mammals hear up to 200 kHz. The superior frequency resolution in mammals is due to their unique mechanism of pre-amplification of sound by active cell-body vibrations of outer hair cells. A long coiled compartment, rather than a short and straight one, provides more space for frequency dispersion and is therefore better adapted to the highly derived functions in mammalian hearing.[2]

As the study of the cochlea should fundamentally be focused upon the level of hair cells, it is important to note the anatomical and physiological differences between the hair cells of various species. In birds, for instance, instead of outer and inner hair cells, there are tall and short hair cells. There are several similarities of note in regard to this comparative data. For one, the tall hair cell is very similar in function to that of the inner hair cell and the short hair cell is very similar in function to that of the outer hair cell. One unavoidable difference, however, is that while all hair cells are attached to a tectorial membrane in birds, only the outer hair cells are attached to the tectorial membrane in mammals.

Additional images[]

See also[]


References[]

  1. Tasaki I. Nerve impulses in individual auditory nerve fibers of guinea pig. J Neurophysiol. 17(2): 97-122, 1954
  2. Vater M, Meng J, Fox RC. Hearing organ evolution and specialization: Early and later mammals. In: GA Manley, AN Popper, RR Fay (Eds). Evolution of the Vertebrate Auditory System, Springer-Verlag, New York 2004, pp 256–288.
  • Cochlear prostheses: An international symposium. (1983).): Annals of the New York Academy of Sciences Vol 405 Jun 1983, 532.
  • Aazh, H., & Moore, B. C. J. (2007). Dead regions in the cochlea at 4 kHz in elderly adults: Relation to absolute threshold, steepness of audiogram, and pure-tone average: Journal of the American Academy of Audiology Vol 18(2) Feb 2007, 97-106.
  • Abdala, C. (2000). Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates: Journal of the Acoustical Society of America Vol 107(1) Jan 2000, 446-456.
  • Abdala, C., & Chatterjee, M. (2003). Maturation of cochlear nonlinearity as measured by distortion product otoacoustic emission suppression growth in humans: Journal of the Acoustical Society of America Vol 114(2) Aug 2003, 932-943.
  • Abdala, C., & Visser-Dumont, L. (2001). Distortion Product Otoacoustic Emissions: A Tool for Hearing Assessment and Scientific Study: Volta Review Vol 103(4) 2001, 281-302.
  • Abdul-Baqi, K. J. (1985). The role of noise-induced hearing loss in cochlear distortion: Dissertation Abstracts International.
  • Abrams, H. B. (1980). Effects of intense acoustic noise on cochlear function in infant and adult guinea pigs: Dissertation Abstracts International.
  • Ahroon, W. A., Hamernik, R. P., & Lei, S.-F. (1996). The effects of reverberant blast waves on the auditory system: Journal of the Acoustical Society of America Vol 100(4, Pt 1) Oct 1996, 2247-2257.
  • Alexander, I. E., & Githler, F. J. (1949). The effects of jet engine noise on the cochlear response of the guinea pig: Journal of Comparative and Physiological Psychology Vol 42(6) Dec 1949, 517-525.
  • Alexander, I. E., & Githler, F. J. (1951). Histological examination of cochlear structure following exposure to jet engine noise: Journal of Comparative and Physiological Psychology Vol 44(6) Dec 1951, 513-524.
  • Alexander, I. E., & Githler, F. J. (1952). Chronic effects of jet engine noise on the structure and function of the cochlear apparatus: Journal of Comparative and Physiological Psychology Vol 45(4) Aug 1952, 381-391.
  • Alexander, I. E., & Githler, F. J. (1955). Chronic effects of a high-frequency stimulus on the structure and function of the cochlea: Journal of Experimental Psychology Vol 49(5) May 1955, 363-366.
  • Allen, J. B. (1997). Derecruitment by multiband compression in hearing aids. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Almadori, G., Ottaviani, F., Paludetti, G., Rosignoli, M., & et al. (1988). Auditory brainstem responses in noise-induced permanent hearing loss: Audiology Vol 27(1) Jan-Feb 1988, 36-41.
  • Al'tman, Y. A., & Nikitin, N. I. (2000). Properties of derived cochlear action potentials in forward tonal masking in guinea pigs: Neuroscience and Behavioral Physiology Vol 30(5) Sep-Oct 2000, 587-598.
  • Altschuler, R. A., Fairfield, D., Cho, Y., Leonova, E., Benjamin, I. J., Miller, J. M., et al. (2002). Stress pathways in the rat cochlea and potential for protection from acquired deafness: Audiology & Neurotology Vol 7(3) May-Jun 2002, 152-156.
  • Anderson, L. A., Malmierca, M. S., Wallace, M. N., & Palmer, A. R. (2006). Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig: European Journal of Neuroscience Vol 24(2) Jul 2006, 491-498.
  • Arehart, K. H., & Burns, E. M. (1999). A comparison of monotonic and dichotic complex-tone pitch perception in listeners with hearing loss: Journal of the Acoustical Society of America Vol 106(2) Aug 1999, 993-997.
  • Ashe, J. H., Cassady, J. M., & Weinberger, N. M. (1976). The relationship of the cochlear microphonic potential to the acquisition of a classically conditioned pupillary dilation response: Behavioral Biology Vol 16(1) Jan 1976, 45-62.
  • Atlas, L. E., & et al. (1983). Results of stimulus and speech-coding schemes applied to multichannel electrodes: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 377-386.
  • Attanasio, G., Buongiorno, G., Piccoli, F., Mafera, B., Cordier, A., Barbara, M., et al. (2001). Laser Doppler measurement of cochlear blood flow changes during conditioning noise exposure: Acta Oto-Laryngologica Vol 121(4) Jun 2001, 465-469.
  • Avan, P., Bonfils, P., Gilain, L., & Mom, T. (2003). Physiopathological significance of distortion-product otoacoustic emissions at 2f1-f2 produced by high- versus low-level stimuli: Journal of the Acoustical Society of America Vol 113(1) Jan 2003, 430-441.
  • Babighian, G., Moushegian, G., & Rupert, A. L. (1975). Central auditory fatigue: Audiology Vol 14(1) Jan-Feb 1975, 72-83.
  • Balthazor, R. J. (1976). A psychoacoustic technique for determining tuning characteristics: Dissertation Abstracts International.
  • Banfai, P., Hortmann, G., Karczag, A., & Luers, S. P. (1984). Selection of patients: Acta Oto-Laryngologica Suppl 411 1984, 147-156.
  • Barnebey, A. (1975). Binaural interaction in the dorsal cochlear nucleus of the rat: Dissertation Abstracts International.
  • Barrett, T. W. (1973). Information processing in the inferior colliculus of cat using high frequency acoustical stimulation and direct electrical stimulation of the osseous spiral laminae: Behavioral Biology Vol 9(2) Aug 1973, 189-219.
  • Barrett, T. W. (1974). Four parameters of information processing in the cochlea: Experientia Vol 30(11) 1974, 1287-1288.
  • Barrs, D. M., Jordan, C. E., & Fifer, R. C. (1986). The cochlear implant program: Military Medicine Vol 151(10) Oct 1986, 509-513.
  • Barry, S. J., & Larson, V. D. (1974). Brief-tone audiometry with normal and deaf school-age children: Journal of Speech & Hearing Disorders Vol 39(4) Nov 1974, 457-464.
  • Beisel, K. W., Rocha-Sanchez, S. M., Morris, K. A., Nie, L., Feng, F., Kachar, B., et al. (2005). Differential Expression of KCNQ4 in Inner Hair Cells and Sensory Neurons is the Basis of Progressive High-Frequency Hearing Loss: Journal of Neuroscience Vol 25(40) Oct 2005, 9285-9293.
  • Beitel, R. E., Snyder, R. L., Schreiner, C. E., Raggio, M. W., & Leake, P. A. (2000). Electrical cochlear stimulation in the deaf cat: Comparisons between psychophysical and central auditory neuronal thresholds: Journal of Neurophysiology Vol 83(4) Apr 2000, 2145-2162.
  • Bekhterev, N. N. (1993). Evoked potential characteristics of the cat auditory cortex under cochlea stimulation by electrical signals with different time parameters: Sensory Systems Vol 7(4) Oct-Dec 1993, 217-223.
  • Bennett, T. L., Morgan, R. J., Murphy, P., & Eddy, L. B. (1978). The effect of unilateral surgical destruction of the cochlea on auditory sensitivity in the chinchilla: Bulletin of the Psychonomic Society Vol 12(2) Aug 1978, 92-94.
  • Berkley, D. A., & Lesser, M. B. (1973). Comparison of single- and double-chamber models of the cochlea: Journal of the Acoustical Society of America Vol 53(4) Apr 1973, 1037-1038.
  • Berlin, C. I., Hood, L., Morlet, T., Rose, K., & Brashears, S. (2003). Auditory Neuropathy/Dys-Synchrony: Diagnosis and Management: Mental Retardation and Developmental Disabilities Research Reviews Vol 9(4) 2003, 225-231.
  • Bian, L., & Chertoff, M. E. (1998). Differentiation of cochlear pathophysiology in ears damaged by salicylate or a pure tone using a nonlinear systems identification technique: Journal of the Acoustical Society of America Vol 104(4) Oct 1998, 2261-2271.
  • Bingham, W. V. D. (1908). Corti'sche Membran und tonempfindungstheorie: Psychological Bulletin Vol 5(7) Jul 1908, 225-226.
  • Black, R. C., Clark, G. M., O'Leary, S. J., & Walters, C. (1983). Intracochlear electrical stimulation of normal and deaf cats investigated using brainstem response audiometry: Acta Oto-Laryngologica Suppl 399 1983, 5-17.
  • Black, R. C., Steel, A. C., & Clark, G. M. (1983). Amplitude and pulse rate difference limens for electrical stimulation of the cochlea following graded degeneration of the auditory nerve: Acta Oto-Laryngologica Vol 95(1-2) Jan-Feb 1983, 27-33.
  • Bledsoe, S. C., Jr., Nagase, S., Miller, J. M., & Altschuler, R. A. (1995). Deafness-induced plasticity in the mature central auditory system: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 7(1) Dec 1995, 225-229.
  • Blegvad, B. (1972). Contralateral masking effect after transsection of the efferent fibers to the cochlea: Scandinavian Audiology Vol 1(3) Sep 1972, 115-118.
  • Bobbin, B. P., & Konishi, T. (1974). Action of cholinergic and anticholinergic drugs at the crossed olivocochlear bundle-hair cell junction: Acta Oto-Laryngologica Vol 77(1-2) Jan 1974, 56-65.
  • Bobbin, R. P., & Konishi, T. (1971). Acetylcholine mimics crossed olivocochlear bundle stimulation: Nature, New Biology Vol 231(24) Jun 1971, 222-223.
  • Bock, G. R., & Frank, M. P. (1984). Brainstem responses in the quivering mutant mouse: Acta Oto-Laryngologica Vol 98(3-4) Sep-Oct 1984, 193-198.
  • Boettcher, F. A., & Salvi, R. J. (1993). Functional changes in the ventral cochlear nucleus following acute acoustic overstimulation: Journal of the Acoustical Society of America Vol 94(4) Oct 1993, 2123-2134.
  • Borg, E., & Engstrom, B. (1983). Hearing thresholds in the rabbit: A behavioral and electrophysiological study: Acta Oto-Laryngologica Vol 95(1-2) Jan-Feb 1983, 19-26.
  • Borg, E., & Zakrisson, J. E. (1974). Stapedius reflex and monaural masking: Acta Oto-Laryngologica Vol 78(3-4) Sep-Oct 1974, 155-161.
  • Botte, M.-C. (1979). Auditory evoked responses: Journal de Psychologie Normale et Pathologique Vol 76(4) Oct-Dec 1979, 381-402.
  • Botte, M.-C., & Chocholle, R. (1979). Auditory fatigue: Results of a few new methods of measurement in man: Journal de Psychologie Normale et Pathologique Vol 76(1) Jan-Mar 1979, 5-21.
  • Bowman, D. M. (1999). Estimating mechanical frequency tuning properties of the cochlea with f(1)- and f. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Brac, M. H., Lycett, P., & McClure, J. A. (1984). Effect of high perilymphatic potassium on brainstem evoked response audiometric thresholds: Acta Oto-Laryngologica Vol 97(3-4) Mar-Apr 1984, 267-272.
  • Bray, C. W., & Thurlow, W. R. (1942). Interference and distortion in the cochlear responses of the pigeon: Journal of Comparative Psychology Vol 33(2) Apr 1942, 279-289.
  • Bremner, F. J., & Denham, D. L. (1993). Lotus 1-2-3 simulation of frequency encoding on the basilar membrane: Behavior Research Methods, Instruments & Computers Vol 25(2) May 1993, 208-211.
  • Brimacombe, J. A., & et al. (1984). Auditory capabilities of patients implanted with the House single-channel cochlear implant: Acta Oto-Laryngologica Suppl 411 1984, 204-216.
  • Briner, W., & Willott, J. F. (1989). Ultrastructural features of neurons in the C57BL/6J mouse anteroventral cochlear nucleus: Young mice versus old mice with chronic presbycusis: Neurobiology of Aging Vol 10(4) Jul-Aug 1989, 295-303.
  • Britt, R., & Starr, A. (1976). Synaptic events and discharge patterns of cochlear nucleus cells: I. Steady-frequency tone bursts: Journal of Neurophysiology Vol 39(1) Jan 1976, 162-178.
  • Britt, R., & Starr, A. (1976). Synaptic events and discharge patterns of cochlear nucleus cells: II. Frequency-modulated tones: Journal of Neurophysiology Vol 39(1) Jan 1976, 179-184.
  • Brown, A. M., Gaskill, S. A., Carlyon, R. P., & Williams, D. M. (1993). Acoustic distortion as a measure of frequency selectivity: Relation to psychophysical equivalent rectangular bandwidth: Journal of the Acoustical Society of America Vol 93(6) Jun 1993, 3291-3297.
  • Brown, A. M., Williams, D. M., & Gaskill, S. A. (1993). The effect of aspirin on cochlear mechanical tuning: Journal of the Acoustical Society of America Vol 93(6) Jun 1993, 3298-3307.
  • Brown, D. K. (1997). Maturation of human cochlear mechanisms as reflected in distortion product emissions. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Brozoski, T. J., Bauer, C. A., & Caspary, D. M. (2002). Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus: Journal of Neuroscience Vol 22(6) Mar 2002, 2383-2390.
  • Bruce, I. C., Sachs, M. B., & Young, E. D. (2003). An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses: Journal of the Acoustical Society of America Vol 113(1) Jan 2003, 369-388.
  • Buno, W., Jr., Velluti, R., Handler, P., & Austt, E. G. (1966). Neural control of the cochlear input in the wakeful free guinea-pig: Physiology & Behavior 1(1) 1966, 23-35.
  • Burian, K. (1984). Clinical results: Acta Oto-Laryngologica Suppl 411 1984, 217-220.
  • Burian, K. (1984). Round table discussion: "Implanted material tolerance." Acta Oto-Laryngologica Suppl 411 1984, 27.
  • Burian, K. (1984). Selection of patients: Acta Oto-Laryngologica Suppl 411 1984, 157-158.
  • Burian, K., Eisenwort, B., & Brauneis, K. (1984). Comparative investigations of auditory perception on selected patients stimulated with extra- or endocochlear electrodes: Acta Oto-Laryngologica Vol 97(5-6) May-Jun 1984, 472-474.
  • Burkard, R. F. (1984). Far-field electrophysiologic manifestations of auditory masking: Dissertation Abstracts International.
  • Busby, P. A., Tong, Y. C., & Clark, G. M. (1992). Psychophysical studies using a multiple-electrode cochlear implant in patients who were deafened early in life: Audiology Vol 31(2) Mar-Apr 1992, 95-111.
  • Buus, S., Florentine, M., & Poulsen, T. (1999). Temporal integration of loudness in listeners with hearing losses of primarily cochlear origin: Journal of the Acoustical Society of America Vol 105(6) Jun 1999, 3464-3480.
  • Caelen, J. (1985). Space/time data-information in the A.R.I.A.L. Project ear model: Speech Communication Vol 4(1-3) Aug 1985, 163-179.
  • Caminos, E., Vale, C., Lujan, R., Martinez-Galan, J. R., & Juiz, J. M. (2005). Developmental regulation and adult maintenance of potassium channel proteins (Kv1.1 and Kv1.2) in the cochlear nucleus of the rat: Brain Research Vol 1056(2) Sep 2005, 118-131.
  • Cant, N. B., & Benson, C. G. (2003). Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei: Brain Research Bulletin Vol 60(5-6) Jun 2003, 457-474.
  • Carrat, R. (1984). Analysis and synthesis of speech regarding cochlear implant: Acta Oto-Laryngologica Suppl 411 1984, 85-94.
  • Cassidy, J. W., & Ditty, K. M. (2001). Gender differences among newborns on a transient otoacoustic emissions test for hearing: Journal of Music Therapy Vol 38(1) Spr 2001, 28-35.
  • Cazals, Y., Aran, J.-M., & Erre, J.-P. (1982). Frequency sensitivity and selectivity of acoustically evoked potentials after complete cochlear hair cell destruction: Brain Research Vol 231(1) Jan 1982, 197-203.
  • Cazals, Y., & et al. (1983). Vestibular acoustic reception in the guinea pig: A saccular function? : Acta Oto-Laryngologica Vol 95(3-4) Mar-Apr 1983, 211-217.
  • Cedolin, L., & Delgutte, B. (2005). Pitch of Complex Tones: Rate-Place and Interspike Interval Representations in the Auditory Nerve: Journal of Neurophysiology Vol 94(1) Jul 2005, 347-362.
  • Cervellera, G., & Quaranta, A. (1982). Audiologic findings in presbycusis: Journal of Auditory Research Vol 22(3) Jul 1982, 161-171.
  • Cervellera, G., Quaranta, A., & Cassano, P. (1978). Remote masking as a test of cochlear conductive hearing losses: Audiology Vol 17(4) Jul-Aug 1978, 317-323.
  • Chambers, A. H., & Lucchina, G. G. (1966). Effects of dinitrophenol on cochlear potentials of the cat: I. Normal ear: Journal of Auditory Research 6(1) 1966, 13-21.
  • Chan, D. K., & Hudspeth, A. J. (2005). Ca-super(2+) current-driven nonlinear amplification by the mammalian cochlea in vitro: Nature Neuroscience Vol 8(2) Feb 2005, 149-155.
  • Charachon, R. (1984). Selection of patients: Acta Oto-Laryngologica Suppl 411 1984, 159-160.
  • Chatrian, G. E., & et al. (1984). Cochlear summating potential recorded from the external auditory meatus of normal humans: Amplitude-intensity functions and relationships to auditory nerve compound action potential: Electroencephalography & Clinical Neurophysiology: Evoked Potentials Vol 59(5) Sep 1984, 396-410.
  • Chen, Z., Ulfendahl, M., Ruan, R., Tan, L., & Duan, M. (2003). Acute Treatment of Noise Trauma with Local Caroverine Application in the Guinea Pig: Acta Oto-Laryngologica Vol 123(8) 2003, 905-909.
  • Chole, R. A., & Henry, K. R. (1983). Disparity in the cytocochleogram and the electrocochleogram in aging LP/J and A/J inbred mice: Audiology Vol 22(4) Jul-Aug 1983, 384-392.
  • Chouard, C. H., Fugain, C., Meyer, B., & Gegu, D. (1984). Prognostic evaluation of the multichannel cochlear implant: Acta Oto-Laryngologica Suppl 411 1984, 161-164.
  • Chouard, C. H., Fugain, C., Meyer, B., & Lacombe, H. (1983). Long-term results of the multichannel cochlear implant: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 387-411.
  • Chute, P. M., Parisier, S. C., & Kramer, S. F. (1984). Assessing candidacy for cochlear implants: II: Hearing Rehabilitation Quarterly Vol 9(3) 1984, 13-16.
  • Clark, G. M. (1992). The development of speech processing strategies for the University of Melbourne/Cochlear multiple channel implantable hearing prosthesis: Journal of Speech-Language Pathology and Audiology Vol 16(2) Jun 1992, 95-107.
  • Clark, G. M., Nathar, J. M., Kranz, H. G., & Maritz, J. S. (1972). A behavioral study on electrical stimulation of the cochlea and central auditory pathways of the cat: Experimental Neurology Vol 36(2) Aug 1972, 350-361.
  • Clark, G. M., Tong, Y. C., & Dowell, R. C. (1983). Clinical results with a multichannel pseudobipolar system: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 370-376.
  • Cohen, M., & Prasher, D. (1992). Defining the relationship between cochlear hearing loss and acoustic reflex thresholds: Scandinavian Audiology Vol 21(4) 1992, 225-238.
  • Conti, A., & Borgo, M. (1964). Behaviour of cytochrome oxidase activity in the cochlea of the guinea-pig following acoustic stimulation: Acta Otolaryngologica 58(4) 1964, 321-330.
  • Cooper, W. E. (1983). The perception of fluent speech: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 48-63.
  • Cornacchia, L., & Del Prete, A. (1998). Detectability of cochlear, acoustic nerve and brainstem potentials in a group of "normal" preterm newborns recorded with insert earphone: Scandinavian Audiology Vol 27(4) 1998, 213-217.
  • Correia, M. J., Nelson, J. B., & Guedry, F. E. (1977). Antisomatogyral illusion: Aviation, Space, and Environmental Medicine Vol 48 Sep 1977, 859-862.
  • Coste, R. L., & Pfingst, B. E. (1996). Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea: III. Pulse polarity: Journal of the Acoustical Society of America Vol 99(5) May 1996, 3099-3108.
  • Counter, S. A. (1973). Critical time processing in normal and cochlear-diseased ears: Journal of Auditory Research Vol 13(2) Apr 1973, 113-119.
  • Crifo, S. (1974). Identification of ototoxic drugs by guinea pig shiver audiometry: Audiology Vol 13(4) Jul 1974, 302-310.
  • Crosby, P. A., & et al. (1984). The Nucleus Multi-channel Implantable Hearing Prosthesis: Acta Oto-Laryngologica Suppl 411 1984, 111-114.
  • Crowley, D. E., Hepp-Reymond, M.-C., Tabowitz, D., & Palin, J. (1965). Cochlear potentials in the albino rat: Journal of Auditory Research 5(4) 1965, 307-316.
  • Daigneault, E. A. (1974). Source of the P1 component of the cochlea round window recording: Acta Oto-Laryngologica Vol 77(6) Jun 1974, 405-411.
  • Dallos, P. (1975). Electrical correlates of mechanical events in the cochlea: Audiology Vol 14(5-6) Nov-Dec 1975, 408-418.
  • Dallos, P. (1981). Cochlear physiology: Annual Review of Psychology Vol 32 1981, 153-190.
  • Dallos, P., Cheatham, M. A., & Ferraro, J. (1974). Cochlear mechanics, nonlinearities, and cochlear potentials: Journal of the Acoustical Society of America Vol 55(3) Mar 1974, 597-605.
  • Dallos, P., & et al. (1972). Cochlear inner and outer hair cells: Functional differences: Science Vol 177(4046) Jul 1972, 356-357.
  • Dallos, P., Santos-Sacchi, J., & Flock, A. (1982). Intracellular recordings from cochlear outer hair cells: Science Vol 218(4572) Nov 1982, 582-584.
  • Dallos, P., & Wang, C.-Y. (1974). Bioelectric correlates of kanamycin intoxication: Audiology Vol 13(4) Jul 1974, 277-289.
  • de Pinho, M., & Roque-da-Silva, A. (1999). A realistic computational model of formation and variability of tonotopic maps in the auditory cortex: Neurocomputing: An International Journal Vol 26-27 Jun 1999, 355-359.
  • Dehmel, S., Kopp-Scheinpflug, C., & Rubsamen, R. (2005). Interplay of Excitation and Inhibition in Auditory Brainstem Processing at Endbulbs of Held of the MNTB and AVCN. New York, NY: Springer Publishing Co.
  • Deng, L. (1992). Processing of acoustic signals in a cochlear model incorporating laterally coupled suppressive elements: Neural Networks Vol 5(1) 1992, 19-34.
  • Dengerink, H. A., Axelsson, A., Miller, J. M., & Wright, J. W. (1984). The effect of noise and carbogen on cochlear vasculature: Acta Oto-Laryngologica Vol 98(1-2) Jul-Aug 1984, 81-88.
  • Densert, O., & Flock, A. (1974). An electron-microscopic study of adrenergic innervation in the cochlea: Acta Oto-Laryngologica Vol 77(3) Mar 1974, 185-197.
  • Dillier, N., & Spillmann, T. (1984). Results and perspectives with extracochlear round window electrodes: Acta Oto-Laryngologica Suppl 411 1984, 221-229.
  • Dolan, D. F. (1984). Developmental changes in physiological responses in auditory nerve fibers in kittens: Dissertation Abstracts International.
  • Dolmazon, J. M., & Boulogne, M. (1982). Interaction phenomena in a model of mechanical to neural transduction in the ear: Speech Communication Vol 1(1) May 1982, 55-73.
  • Don, M., Ponton, C. W., Eggermont, J. J., & Masuda, A. (1993). Gender differences in cochlear response time: An explanation for gender amplitude differences in the unmasked auditory brain-stem response: Journal of the Acoustical Society of America Vol 94(4) Oct 1993, 2135-2148.
  • Don, M., Ponton, C. W., Eggermont, J. J., & Masuda, A. (1994). Auditory brainstem response (ABR) peak amplitude variability reflects individual differences in cochlear response times: Journal of the Acoustical Society of America Vol 96(6) Dec 1994, 3476-3491.
  • Dorman, M. F., Dankowski, K., McCandless, G., Parkin, J. L., & et al. (1991). Vowel and consonant recognition with the aid of a multichannel cochlear implant: The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology Vol 43A(3) Aug 1991, 585-601.
  • Dorman, M. F., Smith, L. M., Dankowski, K., McCandless, G., & et al. (1992). Long-term measures of electrode impedance and auditory thresholds for the Ineraid cochlear implant: Journal of Speech & Hearing Research Vol 35(5) Oct 1992, 1126-1130.
  • Dowell, R. C., Webb, R. L., & Clark, G. M. (1984). Clinical results using a multiple-channel cochlear prosthesis: Acta Oto-Laryngologica Suppl 411 1984, 230-236.
  • Doyle, K. J. (1985). Vowel perception using a single-electrode cochlear implant: Dissertation Abstracts International.
  • Drescher, D. G. (1974). Noise-induced reduction of inner-ear microphonic response: Dependence on body temperature: Science Vol 185(4147) Jul 1974, 273-274.
  • D'Sa, C., Gross, J., Francone, V. P., & Morest, D. K. (2007). Plasticity of synaptic endings in the cochlear nucleus following noise-induced hearing loss is facilitated in the adult FGF2 overexpressor mouse: European Journal of Neuroscience Vol 26(3) Aug 2007, 666-680.
  • Duan, M. L., & Canlon, B. (1996). Differences in forward masking after a temporary and a permanent noise-induced hearing loss: Audiology & Neurotology Vol 1(6) Nov-Dec 1996, 328-338.
  • Dunn, D. E. (1973). The measurement of monaural adaptation to suprathreshold stimuli via masked threshold: Dissertation Abstracts International Vol.
  • Durrant, J. D. (1979). Changes in summating potentials and related electrophysiological manifestations of overstimulation: Journal of Auditory Research Vol 19(3) Jul 1979, 183-200.
  • Duvall, A. J., & Wersall, J. (1964). Site of action of streptomycin upon inner ear sensory cells: Acta Oto-Laryngologica, Stockholm 57 1964, 581-598.
  • Duzhyy, D. E., Sakai, Y., & Sokolowski, B. H. A. (2004). Cloning and developmental expression of Shaker potassium channels in the cochlea of the chicken: Molecular Brain Research Vol 121(1-2) Feb 2004, 70-85.
  • Ebel, A., & et al. (1974). Activity of cholinergic system enzymes in the cochlea of audiogenic seizure susceptible mice: Experientia Vol 30(1) 1974, 48-49.
  • Economou, A., Tartter, V. C., Chute, P. M., & Hellman, S. A. (1992). Speech changes following reimplantation from a single-channel to a multichannel cochlear implant: Journal of the Acoustical Society of America Vol 92(3) Sep 1992, 1310-1323.
  • Edgerton, B. J., Eisenberg, L. S., & Thielemeir, M. A. (1983). Auditory assessment strategy and materials for adult and child candidates for cochlear implantation: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 435-442.
  • Eggermont, J. J. (1974). Basic principles for electrocochleography: Acta Oto-Laryngologica Suppl 316 1974, 7-16.
  • Eggermont, J. J. (1974). The temperature dependency of cochlear adaptation and masking in the guinea pig: Audiology Vol 13(2) Mar 1974, 147-161.
  • Eggermont, J. J., & Don, M. (1982). Analysis of click-evoked brainstem auditory electric potentials using high-pass noise masking and its clinical application: Annals of the New York Academy of Sciences Vol 388 Jun 1982, 471-486.
  • Eggermont, J. J., & Odenthal, D. W. (1974). Action potentials and summating potentials in the normal human cochlea: Acta Oto-Laryngologica Suppl 316 1974, 39-61.
  • Eggermont, J. J., & Odenthal, D. W. (1974). Electrophysiological investigation of the human cochlea: Recruitment, masking and adaptation: Audiology Vol 13(1) Jan 1974, 1-22.
  • Eggermont, J. J., & Odenthal, D. W. (1974). Methods in electrocochleography: Acta Oto-Laryngologica Suppl 316 1974, 17-24.
  • Eggermont, J. J., & Spoor, A. (1973). Cochlear adaptation in guinea pigs: A quantitative description: Audiology Vol 12(4) Jul 1973, 193-220.
  • Eggermont, J. J., & Spoor, A. (1973). Masking of action potentials in the guinea pig cochlea: Its relation to adaptation: Audiology Vol 12(4) Jul 1973, 221-241.
  • Ehret, G. (1979). Correlations between cochlear hair cell loss and shifts of masked and absolute behavioral auditory thresholds in the house mouse: Acta Oto-Laryngologica Vol 87(1-2) Jan-Feb 1979, 28-38.
  • Eisenberg, L. S., Kirk, K. I., Berliner, K. I., & Thielemeir, M. A. (1986). Response to Popelka and Gittelman (1984): "Audiologic findings in a child with a single-channel cochlear implant." Journal of Speech & Hearing Disorders Vol 51(2) May 1986, 180-182.
  • Eisenwort, B., & Benko, E. (1983). Communicative competence in the hearing-impaired: First version of a training and test program for cochlear implant patients and hearing aid patients: Folia Phoniatrica Vol 35(6) Nov-Dec 1983, 273-285.
  • Eisenwort, B., & Burian, K. (1988). Evaluation of speech perception results in cochlear implant patients: Folia Phoniatrica Vol 40(2) Mar-Apr 1988, 74-81.
  • Eisenwort, B., Kropiunigg, U., & Burian, K. (1990). Psychosocial consequences after cochlear implantation: A study on 36 patients: Folia Phoniatrica Vol 42(2) Mar-Apr 1990, 71-76.
  • El-Badry, M. M., & McFadden, S. L. (2007). Electrophysiological correlates of progressive sensorineural pathology in carboplatin-treated chinchillas: Brain Research Vol 1134 Feb 2007, 122-130.
  • Emadi, G., Richter, C.-P., & Dallos, P. (2004). Stiffness of the Gerbil Basilar Membrane: Radial and Longitudinal Variations: Journal of Neurophysiology Vol 91(1) Jan 2004, 474-488.
  • Emmerich, E., Biedermann, M., & Richter, F. (1988). Impulse noise effects on cochlear microphonics and evoked responses from inferior colliculus and medial geniculate nucleus: Activitas Nervosa Superior Vol 30(2) Jun 1988, 98-99.
  • Emmerich, E., Biedermann, M., & Richter, F. (1990). Auditory evoked responses in awake rabbits after exposure to high intensity noise impulses: Activitas Nervosa Superior Vol 32(2) Jun 1990, 119-127.
  • Engstrom, B. (1983). Stereocilia of sensory cells in normal and hearing impaired ears: A morphological, physiological and behavioural study: Scandinavian Audiology Suppl 19 1983, 34.
  • Engstrom, B., & Borg, E. (1983). Cochlear morphology in relation to loss of behavioural, electrophysiological, and middle ear reflex thresholds after exposure to noise: Acta Oto-Laryngologica Suppl 402 1983, 23.
  • Erbek, S. S., Erbek, H. S., Yilmaz, S., Topal, O., Yucel, E., & Ozluoglu, L. N. (2006). Cochleovestibular Dysfunction in Ankylosing Spondylitis: Audiology & Neurotology Vol 11(5) 2006, 294-300.
  • Evans, E. F. (1975). The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea: Audiology Vol 14(5-6) Nov-Dec 1975, 419-442.
  • Evans, E. F. (1978). Place and time coding of frequency in the peripheral auditory system: Some physiological pros and cons: Audiology Vol 17(5) Sep-Oct 1978, 369-420.
  • Evans, E. F., & Elberling, C. (1982). Location-specific components of the gross cochlear action potential: An assessment of the validity of the high-pass masking technique by cochlear nerve fibre recording in the cat: Audiology Vol 21(3) May-Jun 1982, 204-227.
  • Fagelson, M. A., & Champlin, C. A. (1997). Auditory filters measured at neighboring center frequencies: Journal of the Acoustical Society of America Vol 101(6) Jun 1997, 3658-3665.
  • Fettiplace, R., & Hackney, C. M. (2006). The sensory and motor roles of auditory hair cells: Nature Reviews Neuroscience Vol 7(1) Jan 2006, 19-29.
  • Florentine, M. (1992). Effects of cochlear impairment and equivalent-threshold masking on psychoacoustic tuning curves: Audiology Vol 31(5) Sep-Oct 1992, 241-253.
  • Formby, C. C. (1982). Differential sensitivity to tonal frequency and to the rate of modulation of broad-band noise by hearing-impaired listeners: Dissertation Abstracts International.
  • Fourcin, A. J., & et al. (1983). Speech perception with promontory stimulation: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 280-294.
  • Fowler, C. G., & Noffsinger, D. (1983). Effects of stimulus repetition rate and frequency on the auditory brainstem response in normal, cochlear-impaired, and VIII nerve/brainstem-impaired subjects: Journal of Speech & Hearing Research Vol 26(4) Dec 1983, 560-567.
  • Franklin, S. R. (2007). Influence of the cochlea on the development of neural circuits in the inferior colliculus before onset of hearing. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Frederickson, C. J., & Gerken, G. M. (1977). Masking of electrical by acoustic stimuli: Behavioral evidence for tonotopic organization: Science Vol 198(4323) Dec 1977, 1276-1278.
  • Frederickson, C. J., & Gerken, G. M. (1978). Functional characteristics of cochlear nucleus in behaving cat examined by acoustic masking of electrical stimuli: Journal of Neurophysiology Vol 41(6) Nov 1978, 1535-1545.
  • Fridberger, A., de Monvel, J. B., & Ulfendahl, M. (2002). Internal Shearing within the Hearing Organ Evoked by Basilar Membrane Motion: Journal of Neuroscience Vol 22(22) Nov 2002, 9850-9857.
  • Fridberger, A., de Monvel, J. B., Zheng, J., Hu, N., Zou, Y., Ren, T., et al. (2004). Organ of Corti Potentials and the Motion of the Basilar Membrane: Journal of Neuroscience Vol 24(45) 2004, 10057-10063.
  • Fridberger, A., Tomo, I., Ulfendahl, M., de Monvel, J. B., & Hudspeth, A. J. (2006). Imaging hair cell transduction at the speed of sound: Dynamic behavior of mammalian stereocilia: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 103(6) Feb 2006, 1918-1923.
  • Fritze, W. (1978). A computer-controlled binaural balance test: Acta Oto-Laryngologica Vol 86(1-2) Jul-Aug 1978, 89-92.
  • Froehlich, P., Collet, L., Chanal, J.-M., & Morgon, A. (1990). Variability of the influence of a visual task on the active micromechanical properties of the cochlea: Brain Research Vol 508(2) Feb 1990, 286-288.
  • Froehlich, P., Collet, L., & Morgon, A. (1993). Transiently evoked otoacoustic emission amplitudes with changes of directed attention: Physiology & Behavior Vol 53(4) Apr 1993, 679-682.
  • Fuentes-Santamaria, V., Cantos, R., Alvarado, J. C., Garcia-Atares, N., & Lopez, D. E. (2005). Morphologic and Neurochemical Abnormalities in the Auditory Brainstem of the Genetically Epilepsy-prone Hamster (GPG/Vall): Epilepsia Vol 46(7) Jul 2005, 1027-1045.
  • Fugain, C., Meyer, B., Chabolle, F., & Chouard, C. H. (1984). Clinical results of the French multichannel cochlear implant: Acta Oto-Laryngologica Suppl 411 1984, 237-246.
  • Fukui, I., & Ohmori, H. (2004). Tonotopic Gradients of Membrane and Synaptic Properties for Neurons of the Chicken Nucleus Magnocellularis: Journal of Neuroscience Vol 24(34) Aug 2004, 7514-7523.
  • Furman, G. G., & Frishkopf, L. S. (1964). Model of neural inhibition in the mammalian cochlea: Journal of the Acoustical Society of America 36(11) 1964, 2194-2201.
  • Gagne, J.-P. (1992). Ancillary aural rehabilitation services for adult cochlear implant recipients: A review and analysis of the literature: Journal of Speech-Language Pathology and Audiology Vol 16(2) Jun 1992, 121-128.
  • Ganeshina, O., & Vorobyev, M. (2006). Structural Aspects of Slow Mechanical Adaptation in the Vertebrate Cochlea: International Journal of Comparative Psychology Vol 19(1) 2006, 62-82.
  • Gans, D. P. (1980). Underestimation of auditory fatigue as measured by the compound action potential: Journal of Auditory Research Vol 20(4) Oct 1980, 297-305.
  • Gao, J., Wang, X., Wu, X., Aguinaga, S., Huynh, K., Jia, S., et al. (2007). Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 104(30) Jul 2007, 12542-12547.
  • Gardi, J., Merzenich, M., & McKean, C. (1979). Origins of the scalp-recorded frequency-following response in the cat: Audiology Vol 18(5) Sep-Oct 1979, 353-381.
  • Gardi, J. N. (1979). The scalp-recorded frequency following response: Its origins, its frequency specificity, and its clinical applicability: Dissertation Abstracts International.
  • Gates, G. R., & Chia-Shong, C. (1976). Priming for audiogenic seizures in BALB/c mice as a function of stimulus exposure duration and age: Experimental Neurology Vol 51(3) Jun 1976, 593-602.
  • Gaumond, R. P., Molnar, C. E., & Kim, D. O. (1982). Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability: Journal of Neurophysiology Vol 48(3) Sep 1982, 856-873.
  • Geers, A. E., & Moog, J. S. (1992). The Central Institute for the Deaf cochlear implant study: A progress report: Journal of Speech-Language Pathology and Audiology Vol 16(2) Jun 1992, 129-140.
  • Geers, A. E., & Tobey, E. (1992). Effects of cochlear implants and tactile aids on the development of speech production skills in children with profound hearing impairment: Volta Review Vol 94(5) Nov 1992, 135-163.
  • Geisler, C. D., & Cai, Y. (1996). Relationships between frequency-tuning and spatial-tuning curves in the mammalian cochlea: Journal of the Acoustical Society of America Vol 99(3) Mar 1996, 1550-1555.
  • Geisler, C. D., Rhode, W. S., & Kennedy, D. T. (1974). Responses to tonal stimuli of single auditory nerve fibers and their relationship to basilar membrane motion in the squirrel monkey: Journal of Neurophysiology Vol 37(6) Nov 1974, 1156-1172.
  • Genin, J., & Charachon, R. (1984). Electrical characteristics of a set of electrodes: Acta Oto-Laryngologica Suppl 411 1984, 124-130.
  • Gersuni, G. V., & Volokhov, A. A. (1936). On the electrical excitability of the auditory organ on the effect of alternating currents on the normal auditory apparatus: Journal of Experimental Psychology Vol 19(3) Jun 1936, 370-382.
  • Gfeller, K., & Lansing, C. R. (1991). Melodic, rhythmic, and timbral perception of adult cochlear implant users: Journal of Speech & Hearing Research Vol 34(4) Aug 1991, 916-920.
  • Giard, M.-H., Collet, L., Bouchet, P., & Pernier, J. (1994). Auditory selective attention in the human cochlea: Brain Research Vol 633(1-2) Jan 1994, 353-356.
  • Gibbin, K. P., Mason, S. M., & Kent, S. E. (1983). Prolongation of the cochlear microphonic in man: Cochlear microphonic ringing: Acta Oto-Laryngologica Vol 95(1-2) Jan-Feb 1983, 13-18.
  • Giraud, A. L., Wable, J., Chays, A., Collet, L., & Chery-Croze, S. (1997). Influence of contralateral noise on distortion product latency in humans: Is the medial olivocochlear efferent system involved? : Journal of the Acoustical Society of America Vol 102(4) Oct 1997, 2219-2227.
  • Glasberg, B. R., & Moore, B. C. (1988). Psychoacoustic abilities of subjects with unilateral and bilateral cochlear hearing impairments and their relationship to the ability to understand speech: Scandinavian Audiology Suppl 32 1988-1989, 25.
  • Glattke, T. J. (2003). Thank you, Professor Zwislocki! : Journal of Deaf Studies and Deaf Education Vol 8(3) Jul 2003, 364.
  • Gleich, O., Bielenberg, K., & Strutz, J. (1995). Sound induced expression of c-Fos in GABA positive neurones of the gerbil cochlear nucleus: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 7(1) Dec 1995, 29-32.
  • Godey, B., Morandi, X., Beust, L., Brassier, G., & Bourdiniere, J. (1998). Sensitivity of auditory brainstem response in acoustic neuroma screening: Acta Oto-Laryngologica Vol 118(4) 1998, 501-504.
  • Goldberg, J. M., & Greenwood, D. D. (1966). Response of neurons of the dorsal and posteroventral cochlear nuclei of the cat to acoustic stimuli of long duration: Journal of Neurophysiology 29(1) 1966, 72-93.
  • Goldenberg, R. A., & Derbyshire, A. J. (1975). Average evoked potentials in cats with lesions of auditory pathway: Journal of Speech & Hearing Research Vol 18(3) Sep 1975, 420-429.
  • Golding, N. L., Robertson, D., & Oertel, D. (1995). Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision: Journal of Neuroscience Vol 15(4) Apr 1995, 3138-3153.
  • Goldstein, B. A. (1981). The effect of cochlear dysfunction on central auditory speech test performance: Dissertation Abstracts International.
  • Goldstein, J. L. (1978). Mechanisms of signal analysis and pattern perception in periodicity pitch: Audiology Vol 17(5) Sep-Oct 1978, 421-445.
  • Goodfellow, L. D. (1945). Artifacts in the investigation of sensitivity to vibration: Journal of Experimental Psychology Vol 35(5) Oct 1945, 425-431.
  • Gorga, M. P., & Abbas, P. J. (1982). An empirical evaluation of the effects of high-pass noise on the whole-nerve action potential: Journal of Speech & Hearing Research Vol 25(3) Sep 1982, 456-461.
  • Greenwood, D. D., & Joris, P. X. (1996). Mechanical and "temporal" filtering as codeterminants of the response by cat primary fibers to amplitude-modulated signals: Journal of the Acoustical Society of America Vol 99(2) Feb 1996, 1029-1039.
  • Gribenski, A. (1979). The ear: Auditory receptor and organ of balance: Journal de Psychologie Normale et Pathologique Vol 76(4) Oct-Dec 1979, 439-456.
  • Griesinger, C. B., Richards, C. D., & Ashmore, J. F. (2005). Fast vesicle replenishment allows indefatigable signalling at the first auditory synapse: Nature Vol 435(7039) May 2005, 212-215.
  • Griffiths, T. D., Uppenkamp, S., Johnsrude, I., Josephs, O., & Patterson, R. D. (2001). Encoding of the temporal regularity of sound in the human brainstem: Nature Neuroscience Vol 4(6) Jun 2001, 633-637.
  • Grose, J. H. (1987). The applicability of evoked oto-acoustic emissions in the assessment of cochlear function: Dissertation Abstracts International.
  • Grose, J. H., & Hall, J. W. (1996). Perceptual organization of sequential stimuli in listeners with cochlear hearing loss: Journal of Speech & Hearing Research Vol 39(6) Dec 1996, 1149-1158.
  • Grose, J. H., Hall, J. W., III, & Buss, E. (2004). Duration Discrimination in Listeners With Cochlear Hearing Loss: Effects of Stimulus Type and Frequency: Journal of Speech, Language, and Hearing Research Vol 47(1) Feb 2004, 5-12.
  • Gross, N. B. (1952). The effects of cochlear lesions on the auditory response of the guinea pig: Journal of Comparative and Physiological Psychology Vol 45(2) Apr 1952, 127-139.
  • Gunn, W. J. (1973). Greater cochlear excitation in subjects listening to faint auditory signals: Journal of Auditory Research Vol 13(1) Jan 1973, 6-9.
  • Hackney, C. M. (2006). From Cochlea to Cortex: A Simple Anatomical Description. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Hackney, C. M., Mahendrasingam, S., Jones, E. M. C., & Fettiplace, R. (2003). The Distribution of Calcium Buffering Proteins in the Turtle Cochlea: Journal of Neuroscience Vol 23(11) Jun 2003, 4577-4589.
  • Hannley, M., & Jerger, J. (1985). Patterns of phoneme identification error in cochlear and eighth-nerve disorders: Audiology Vol 24(3) May-Jun 1985, 157-166.
  • Harder, H., Arlinger, S., & Kylen, P. (1983). Electrocochleography with bone-conducted stimulation: A comparative study of different methods of stimulation: Acta Oto-Laryngologica Vol 95(1-2) Jan-Feb 1983, 35-45.
  • Harkrider, A. W., & Tampas, J. W. (2006). Differences in Responses from the Cochleae and Central Nervous Systems of Females with Low versus High Acceptable Noise Levels: Journal of the American Academy of Audiology Vol 17(9) Oct 2006, 667-676.
  • Harris, J. D. (1955). Review of Physiological acoustics: Psychological Bulletin Vol 52(4) Jul 1955, 363-365.
  • Harrison, R. V. (1992). "The development of speech processing strategies for the University of Melbourne/Cochlear multiple channel implantable hearing prosthesis": Commentary: Journal of Speech-Language Pathology and Audiology Vol 16(2) Jun 1992, 109-111.
  • Harrison, R. V. (2001). Age-related tonotopic map plasticity in the central auditory pathways: Scandinavian Audiology Vol 30(Suppl53) 2001, 8-14.
  • Harty, T. P., & Davis, M. (1985). Cocaine: Effects on acoustic startle and startle elicited electrically from the cochlear nucleus: Psychopharmacology Vol 87(4) Dec 1985, 396-399.
  • Hasenstab, M. S. (1989). The multichannel cochlear implant in children: Topics in Language Disorders Vol 9(4) Sep 1989, 45-58.
  • Hawker, K., Fuchs, H., Angelis, M. H., & Steel, K. P. (2005). Two new mouse mutants with vestibular defects that map to the highly mutable locus on chromosome 4: International Journal of Audiology Vol 44(3) Mar 2005, 171-177.
  • Hebert, R., & Dussault, J. H. (1984). Permanent peripheral hearing system alteration following transient neonatal hyperthyroidism in rats: Developmental Brain Research Vol 14(2) Jun 1984, 159-164.
  • Heil, P., & Scheich, H. (1992). Postnatal shift of tonotopic organization in the chick auditory cortex analogue: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 3(5) May 1992, 381-384.
  • Hellman, R. P. (1997). Growth of loudness in sensorineural impairment: Experimental results and modeling implications. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Hellman, R. P., & Meiselman, C. H. (1990). Loudness relations for individuals and groups in normal and impaired hearing: Journal of the Acoustical Society of America Vol 88(6) Dec 1990, 2596-2606.
  • Hellman, S. A., Chute, P. M., Kretschmer, R. E., Nevins, M. E., & et al. (1991). The development of a children's implant profile: American Annals of the Deaf Vol 136(2) Apr 1991, 77-81.
  • Henry, K. R. (1984). Cochlear damage resulting from exposure to four different octave bands of noise at three ages: Behavioral Neuroscience Vol 98(1) Feb 1984, 107-117.
  • Henry, K. R. (1984). Cochlear microphonics and action potentials mature and decline at different rates in the normal and pathologic mouse cochlea: Developmental Psychobiology Vol 17(5) Sep 1984, 493-504.
  • Henry, K. R. (1984). Noise and the young mouse: Genotype modifies the sensitive period for effects on cochlear physiology and audiogenic seizures: Behavioral Neuroscience Vol 98(6) Dec 1984, 1073-1082.
  • Henry, K. R. (1985). Cochlear function and audiogenic seizures: Developmental covariance in the LP/J mouse: Developmental Psychobiology Vol 18(6) Nov 1985, 461-466.
  • Henry, K. R. (1998). Temporal factors associated with cochlear nerve tuning to dual and single tones: A qualitative study: Journal of the Acoustical Society of America Vol 104(4) Oct 1998, 2272-2279.
  • Henry, K. R. (2000). Low-frequency acoustic modulations generated by the high-frequency portion of the cochlea, noninvasively recorded from the scalp of mice (Mus musculus): Journal of Comparative Psychology Vol 114(1) Mar 2000, 22-35.
  • Henry, K. R., & Buzzone, R. (1986). Auditory physiology and behavior in RB/1bg, RB/3bg, and their F-sub-1 hybrid mice (Mus musculus): Influence of genetics, age, and acoustic variables on audiogenic seizure thresholds and cochlear functions: Journal of Comparative Psychology Vol 100(1) Mar 1986, 46-51.
  • Henry, K. R., & Chole, R. A. (1979). Cochlear electrical activity in the C57BL/6 laboratory mouse: Volume-conducted vertex and round window responses: Acta Oto-Laryngologica Vol 87(1-2) Jan-Feb 1979, 61-68.
  • Henry, K. R., & Chole, R. A. (1980). Genotypic differences in behavioral, physiological, and anatomical expressions of age-related hearing loss in the laboratory mouse: Audiology Vol 19(5) Sep-Oct 1980, 369-383.
  • Henson, O. W., & Pollak, G. D. (1972). A technique for chronic implantation of electrodes in the cochleae of bats: Physiology & Behavior Vol 8(6) Jun 1972, 1185-1187.
  • Herdman, A. T., Picton, T. W., & Stapells, D. R. (2002). Place specificity of multiple auditory steady-state responses: Journal of the Acoustical Society of America Vol 112(4) Oct 2002, 1569-1582.
  • Hewitt, M. J., & Meddis, R. (1994). A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus: Journal of the Acoustical Society of America Vol 95(4) Apr 1994, 2145-2159.
  • Hibino, H., Higashi-Shingai, K., Fujita, A., Iwai, K., Ishii, M., & Kurachi, Y. (2004). Expression of an inwardly rectifying K-super(+) channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential: European Journal of Neuroscience Vol 19(1) Jan 2004, 76-84.
  • Hicks, A. (1978). An investigation of certain parameters of binaural fusion in normal and hearing impaired listeners: Dissertation Abstracts International.
  • Ho, E. C., Proops, D., Andrews, P., & Graham, J. (2007). Unexpected exit of a cochlear implant electrode through the wall of the basal turn of the cochlea: A report on two patients: Cochlear Implants International Vol 8(3) Sep 2007, 162-171.
  • Hochmair-Desoyer, I. J., Hochmair, E. S., Burian, K., & Stiglbrunner, H. K. (1983). Percepts from the Vienna cochlear prosthesis: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 295-306.
  • Hodges, A. V. (1991). The relationship between electric auditory-evoked responses and psychophysical percepts obtained through a Nucleus 22 channel cochlear implant: Dissertation Abstracts International.
  • Hoeffding, V., & Fechter, L. D. (1991). Trimethyltin disrupts auditory function and cochlear morphology in pigmented rats: Neurotoxicology and Teratology Vol 13(2) Mar-Apr 1991, 135-145.
  • Hoffer, M. E., Kopke, R. D., Weisskopf, P., Gottshall, K., Allen, K., & Wester, D. (2001). Microdose gentamicin administration via the round window microcatheter: Results in patients with Meniere's disease. New York, NY: New York Academy of Sciences.
  • Hoke, M., Pantev, C., Lutkenhoner, B., Lehnertz, K., & et al. (1989). Magnetic fields from the auditory cortex of a deaf human individual occurring spontaneously or evoked by stimulation through a cochlear prosthesis: Audiology Vol 28(3) May-Jun 1989, 152-170.
  • Hood, J. D., & Prasher, D. K. (1990). Effect of simulated bilateral cochlear distortion on speech discrimination in normal subjects: Scandinavian Audiology Vol 19(1) 1990, 37-41.
  • Hori, R., Nakagawa, T., Sakamoto, T., Matsuoka, Y., Takebayashi, S., & Ito, J. (2007). Pharmacological inhibition of Notch signaling in the mature guinea pig cochlea: Neuroreport: For Rapid Communication of Neuroscience Research Vol 18(18) Dec 2007, 1911-1914.
  • Horn, R. M., Nozza, R. J., & Dolitsky, J. N. (1991). Audiological and medical considerations for children with cochlear implants: American Annals of the Deaf Vol 136(2) Apr 1991, 82-86.
  • Horner, K. C., Giraudet, F., Lucciano, M., & Cazals, Y. (2001). Sympathectomy improves the ear's resistance to acoustic trauma--could stress render the ear more sensitive? : European Journal of Neuroscience Vol 13(2) Jan 2001, 405-408.
  • Hoshino, O. (2007). Spatiotemporal Conversion of Auditory Information for Cochleotopic Mapping: Neural Computation Vol 19(2) Feb 2007, 351-370.
  • Hossain, W. A., Antic, S. D., Yang, Y., Rasband, M. N., & Morest, D. K. (2005). Where Is the Spike Generator of the Cochlear Nerve? Voltage-Gated Sodium Channels in the Mouse Cochlea: Journal of Neuroscience Vol 25(29) Jul 2005, 6857-6868.
  • Hubbard, A. E., & Geisler, C. D. (1972). A hybrid-computer model of the cochlear partition: Journal of the Acoustical Society of America Vol 51(6, Pt 2) Jun 1972, 1895-1903.
  • Hudspeth, A. J. (1983). The hair cells of the inner ear: Scientific American Vol 248(1) Jan 1983, 54-64.
  • Hudspeth, A. J. (1983). Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system: Annual Review of Neuroscience Vol 6 1983, 187-215.
  • Hultcrantz, M. (1985). Structure and function of the adult inner ear in the mouse following prenatal irradiation: Scandinavian Audiology Suppl 24 1985, 24.
  • Hunter, W. S. (1924). Review of Anatomical and physiological studies on the growth of the inner ear of the albino rat. The American anatomical memoirs: Psychological Bulletin Vol 21(6) Jun 1924, 347-348.
  • Hunter-Duvar, I. M., & Bredberg, G. (1974). Effects of intense auditory stimulation: Hearing losses and inner ear changes in the chinchilla: Journal of the Acoustical Society of America Vol 55(4) Apr 1974, 795-801.
  • Hunter-Duvar, I. M., & Elliott, D. N. (1972). Effects of intense auditory stimulation: Hearing losses and inner ear changes in the squirrel monkey: Journal of the Acoustical Society of America Vol 52(4, Pt 2) Oct 1972, 1181-1192.
  • Hurley, P. A., Crook, J. M., & Shepherd, R. K. (2007). Schwann cells revert to non-myelinating phenotypes in the deafened rat cochlea: European Journal of Neuroscience Vol 26(7) Oct 2007, 1813-1821.
  • Huss, M., & Moore, B. C. J. (2003). Tone decay for hearing-impaired listeners with and without dead regions in the cochlea: Journal of the Acoustical Society of America Vol 114(6,Pt1) Dec 2003, 3283-3294.
  • Ickes, M. A. (1992). Effects of contralateral stimulation on transient evoked otoacoustic emissions: Dissertation Abstracts International.
  • Igarashi, M., Cranford, J. L., Nakai, Y., & Alford, B. R. (1977). Behavioral auditory function after transection of crossed olivo-cochlear bundle in the cat: III. Further study of ambient light intensity discrimination under intense noise: Acta Oto-Laryngologica Vol 83(5-6) May-Jun 1977, 410-416.
  • Ingvarsson, K. (1982). Dynamics of cochlear hair cells as inferred from cochlear potentials and responses from auditory nerve fibers: Dissertation Abstracts International.
  • Ipakchi, R., Kyin, T., & Saunders, J. C. (2005). Loss and Recovery of Sound-Evoked Otoacoustic Emissions in Young Chicks following Acoustic Trauma: Audiology & Neurotology Vol 10(4) Jul-Aug 2005, 209-219.
  • Irvine, D. R., & Webster, W. R. (1972). Studies of peripheral gating in the auditory system of cats: Electroencephalography & Clinical Neurophysiology Vol 32(5) May 1972, 545-556.
  • Iwai, H., Lee, S., Baba, S., Tomoda, K., Inaba, M., Ikehara, S., et al. (2004). Bone Marrow Cells as an Origin of Immune-mediated Hearing Loss: Acta Oto-Laryngologica Vol 124(1) Jan 2004, 8-12.
  • Jagger, D. J., & Forge, A. (2006). Compartmentalized and Signal-Selective Gap Junctional Coupling in the Hearing Cochlea: Journal of Neuroscience Vol 26(4) Jan 2006, 1260-1268.
  • Jauhiainen, T., Kohonen, A., & Jauhiainen, M. (1972). Combined effect of noise and neomycin on the cochlea: Acta Oto-Laryngologica Vol 73(5) May 1972, 387-390.
  • Javel, E. (1997). Cochlear excitation patterns in sensorineural hearing loss. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Jeffress, L. A. (1939). The case for, and some implications of the place theory of hearing: Psychological Review Vol 46(1) Jan 1939, 31-45.
  • Jenison, R. L. (1997). A computational model of reorganization in auditory cortex in response to cochlear lesions. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Jiang, H., Talaska, A. E., Schacht, J., & Sha, S.-H. (2007). Oxidative imbalance in the aging inner ear: Neurobiology of Aging Vol 28(10) Oct 2007, 1605-1612.
  • Johnson, M. T., Yuan, X., & Ren, Y. (2007). Speech signal enhancement through adaptive wavelet thresholding: Speech Communication Vol 49(2) Feb 2007, 123-133.
  • Johnstone, B. M., & Yates, G. K. (1974). Basilar membrane tuning curves in the guinea pig: Journal of the Acoustical Society of America Vol 55(3) Mar 1974, 584-587.
  • Jones, T. A., Jones, S. M., & Paggett, K. C. (2006). Emergence of Hearing in the Chicken Embryo: Journal of Neurophysiology Vol 96(1) Jul 2006, 128-141.
  • Jongkamonwiwat, N., Phansuwan-Pujito, P., Casalotti, S. O., Forge, A., Dodson, H., & Govitrapong, P. (2006). The existence of opioid receptors in the cochlea of guinea pigs: European Journal of Neuroscience Vol 23(10) May 2006, 2701-2711.
  • Jordan, V. M., Pinheiro, M. L., Chiba, K., & Jimenez, A. (1973). Cochlear pathology in monkeys exposed to impulse noise: Acta Oto-Laryngologica Suppl 312 1973, 16-30.
  • Joris, P. X., Van de Sande, B., Louage, D. H., & van der Heijden, M. (2006). Binaural and cochlear disparities: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 103(34) Aug 2006, 12917-12922.
  • Josset, P., Meyer, B., Gegu, D., & Chouard, C. H. (1984). Implant material tolerance: Acta Oto-Laryngologica Suppl 411 1984, 45-52.
  • Kaiser, A., Fedrowitz, M., Ebert, U., Zimmermann, E., Hedrich, H.-J., Wedekink, D., et al. (2001). Auditory and vestibular defects in the circling (Ci2) rat mutant: European Journal of Neuroscience Vol 14(7) Oct 2001, 1129-1142.
  • Kakigi, A., Hirakawa, H., Harel, N., Mount, R. J., & Harrison, R. V. (1998). Basal cochlear lesions result in increased amplitude of otoacoustic emissions: Audiology & Neurotology Vol 3(6) Nov-Dec 1998, 361-372.
  • Kandler, K., & Herbert, H. (1991). Auditory projections from the cochlear nucleus to pontine and mesencephalic reticular nuclei in the rat: Brain Research Vol 562(2) Oct 1991, 230-242.
  • Kaneko, T., Harasztosi, C., Mack, A. F., & Gummer, A. W. (2006). Membrane traffic in outer hair cells of the adult mammalian cochlea: European Journal of Neuroscience Vol 23(10) May 2006, 2712-2722.
  • Kanjhan, R., Raybould, N. P., Jagger, D. J., Greenwood, D., & Housley, G. D. (2003). Allosteric Modulation of Native Cochlear P2X Receptors: Insights from Comparison with Recombinant P2X-sub-2 receptors: Audiology & Neurotology Vol 8(3) May-Jun 2003, 115-128.
  • Kanold, P. O., & Young, E. D. (2001). Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus: Journal of Neuroscience Vol 21(19) Oct 2001, 7848-7858.
  • Kapadia, S., & Lutman, M. E. (1999). Reduced "audiogram ripple" in normally-hearing subjects with otoacoustic emissions: Audiology Vol 38(5) Sep-Oct 1999, 257-261.
  • Kates, J. M. (1997). Using a cochlear model to develop adaptive hearing-aid processing. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Kawamoto, K., Ishimoto, S.-I., Minoda, R., Brough, D. E., & Raphael, Y. (2003). Math1 Gene Transfer Generates New Cochlear Hair Cells in Mature Guinea Pigs In Vivo: Journal of Neuroscience Vol 23(11) Jun 2003, 4395-4400.
  • Kawano, A., Seldon, H. L., Clark, G. M., Ramsden, R. T., & Raine, C. H. (1998). Intracochlear factors contributing to psychophysical percepts following cochlear implantation: Acta Oto-Laryngologica Vol 118(3) 1998, 313-326.
  • Kawase, T., Delgutte, B., & Liberman, M. C. (1993). Antimasking effects of the olivocochlear reflex: I. Enhancement of auditory-nerve response to masked tones: Journal of Neurophysiology Vol 70(6) Dec 1993, 2533-2549.
  • Kawase, T., & Liberman, C. (1993). Antimasking effects of the olivocochlear reflex: I. Enhancement of compound action potentials to masked tones: Journal of Neurophysiology Vol 70(6) Dec 1993, 2519-2532.
  • Keefe, D. H., Zhao, F., Neely, S. T., Gorga, M. P., & Vohr, B. R. (2003). Ear-canal acoustic admittance and reflectance effects in human neonates. I. Predictions of otoacoustic emission and auditory brainstem responses: Journal of the Acoustical Society of America Vol 113(1) Jan 2003, 389-406.
  • Keidel, W. D. (1980). Neurophysiological requirements for implanted cochlear prostheses: Audiology Vol 19(2) 1980, 105-127.
  • Keilmann, A., & Herdegen, T. (1997). The c-Fos transcripition factor in the auditory pathway of the juvenile rat: Effects of acoustic deprivation and repetitive stimulation: Brain Research Vol 753(2) Apr 1997, 291-298.
  • Kennedy, H. J., Crawford, A. C., & Fettiplace, R. (2005). Force generation by mammalian hair bundles supports a role in cochlear amplification: Nature Vol 433(7028) Feb 2005, 880-883.
  • Kennedy, H. J., Evans, M. G., Crawford, A. C., & Fettiplace, R. (2003). Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells: Nature Neuroscience Vol 6(8) Aug 2003, 832-836.
  • Kettner, R. E. (1981). Cochlear nucleus, inferior colliculus, and medial geniculate response patterns during auditory signal detection behavior in the rabbit: Dissertation Abstracts International.
  • Khalfa, S., Bruneau, N., Roge, B., Georgieff, N., Veuillet, E., Adrien, J. L., et al. (2001). Peripheral auditory asymmetry in infantile autism: European Journal of Neuroscience Vol 13(3) Feb 2001, 628-632.
  • Khechinashvili, S. N., & Kevanishvili, Z. S. (1974). Experiences in computer audiometry (ECoG and ERA): Audiology Vol 13(5) Sep 1974, 391-402.
  • Khechinashvili, S. N., Kevanishvili, Z. S., & Kadzhaya, O. A. (1972). Evoked potentials of the auditory system in man: Fiziologicheskii Zhurnal SSSR im I M Sechenova Vol 58(4) Apr 1972, 527-533.
  • Kho, S. T., Lopez, I. A., Evans, C., Ishiyama, A., & Ishiyama, G. (2006). Immunolocalization of orphanin FQ in rat cochlea: Brain Research Vol 1113(1) Oct 2006, 146-152.
  • Kiang, N. Y., & et al. (1982). Hair-cell innervation by spiral ganglion cells in adult cats: Science Vol 217(4555) Jul 1982, 175-177.
  • Kim, D. O., Molnar, C. E., & Pfeiffer, R. R. (1973). A system of nonlinear differential equations modeling basilar-membrane motion: Journal of the Acoustical Society of America Vol 54(6) Dec 1973, 1517-1529.
  • Kim, S., Frisina, D. R., & Frisina, R. D. (2002). Effects of Age on Contralateral Suppression of Distortion Product Otoacoustic Emissions in Human Listeners with Normal Hearing: Audiology & Neurotology Vol 7(6) Nov-Dec 2002, 348-357.
  • Kimitsuki, T., Matsuda, K., & Komune, S. (2006). Calcium action on the membrane currents possessing the properties of mechano-electric transducer currents in inner hair cells of the guinea-pig cochlea: International Journal of Neuroscience Vol 116(11) Nov 2006, 1327-1335.
  • Kimura, R., Schuknecht, H., & Sando, I. (1964). Fine morphology of the sensory cells in the organ of corti of man: Acta Otolaryngologica 58(5) 1964, 390-408.
  • Kimura, R. S., Schuknecht, H. F., & Sutton, S. (1956). Effects of cochlear lesions on the threshold responses of the auditory cortex in chronic experiments: Journal of Comparative and Physiological Psychology Vol 49(1) Feb 1956, 96-104.
  • Kirk, K. I. (1992). The use of static and dynamic vowel cues by multichannel cochlear implant patients: Dissertation Abstracts International.
  • Kirk, K. I., Tye-Murray, N., & Hurtig, R. R. (1992). The use of static and dynamic vowel cues by multichannel cochlear implant users: Journal of the Acoustical Society of America Vol 91(6) Jun 1992, 3487-3498.
  • Kitajiri, S.-I., Sakamoto, T., & Ito, J. (2004). Genes Related to Hearing Disorders: Acta Oto-Laryngologica Vol 124(Suppl551) Mar 2004, 10-13.
  • Kitzes, L. M. (1984). Some physiological consequences of neonatal cochlear destruction in the inferior colliculus of the gerbil, Meriones unguiculatus: Brain Research Vol 306(1-2) Jul 1984, 171-178.
  • Klein, A. J., & Dubno, J. R. (1993). Minimal upward spread of masking: Correlations with speech and auditory brainstem response masked thresholds: Journal of the Acoustical Society of America Vol 93(6) Jun 1993, 3422-3430.
  • Klinke, R., Kral, A., Heid, S., Tillein, J., & Hartmann, R. (1999). Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation: Science Vol 285(5434) Sep 1999, 1729-1733.
  • Kluk, K., & Moore, B. C. J. (2006). Detecting dead regions using psychophysical tuning curves: A comparison of simultaneous and forward masking: International Journal of Audiology Vol 45(8) Aug 2006, 463-476.
  • Knapp, R. B. (1990). A real-time speech processing system for cochlear prostheses: Dissertation Abstracts International.
  • Knight, R. D. (2004). Diplacusis, hearing threshold and otoacoustic emissions in an episode of sudden, unilateral cochlear hearing loss: International Journal of Audiology Vol 43(1) Jan 2004, 45-53.
  • Koide, Y., Hando, R., & Yoshikawa, Y. (1964). Distribution of some oxidizing enzymes in the cochlea: Acta Otolaryngologica 58(4) 1964, 344-354.
  • Kokko-Cunningham, A., & Ades, H. W. (1976). Acetylcholinesterase activity in the chinchilla organ of Corti in normal and acoustically overstimulated animals: Acta Oto-Laryngologica Vol 81(1-2) Jan-Feb 1976, 48-56.
  • Konrad-Martin, D., & Keefe, D. H. (2003). Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: Testing cochlear model predictions: Journal of the Acoustical Society of America Vol 114(4,Pt1) Oct 2003, 2021-2043.
  • Koppl, C. (1997). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba: Journal of Neuroscience Vol 17(9) May 1997, 3312-3321.
  • Koppl, C., & Carr, C. E. (2003). Computational Diversity in the Cochlear Nucleus Angularis of the Barn Owl: Journal of Neurophysiology Vol 89(4) Apr 2003, 2313-2329.
  • Kossl, M., Foeller, E., Drexl, M., Vater, M., Mora, E., Coro, F., et al. (2003). Postnatal Development of Cochlear Function in the Mustached Bat, Pteronotus parnellii: Journal of Neurophysiology Vol 90(4) Oct 2003, 2261-2273.
  • Krochmalska, E. (1974). Effect of industrial noise and ototoxic antibiotics on cochlear function: Acta Oto-Laryngologica Vol 77(1-2) Jan 1974, 44-50.
  • Kujawa, S. G., & Liberman, M. C. (1997). Conditioning-related protection from acoustic injury: Effects of chronic deefferentation and sham surgery: Journal of Neurophysiology Vol 78(6) Dec 1997, 3095-3106.
  • Kuk, F. K. (1989). Single-channel versus multichannel electrical stimulation: Voicing-frequency and formant-transition difference limens: Scandinavian Audiology Vol 18(3) 1989, 149-153.
  • Kuk, F. K., Tyler, R. S., Gantz, B. J., & Bertschy, M. (1990). Intensity operating range measures as predictors of word-recognition ability in cochlear implant subjects: Scandinavian Audiology Vol 19(3) 1990, 139-145.
  • Kumar, A., & Barman, A. (2002). Effect of efferent-induced changes on acoustical reflex: International Journal of Audiology Vol 41(2) Mar 2002, 144-147.
  • Kunzle, H. (1986). Projections from the cochlear nuclear complex to rhombencephalic auditory centers and torus semicircularis in the turtle: Brain Research Vol 379(2) Aug 1986, 307-319.
  • Lansing, C. R. (1992). Communication management strategies requested by experienced cochlear implant users: Journal of the Academy of Rehabilitative Audiology Vol 25 1992, 130-145.
  • Lansing, C. R., & Davis, J. M. (1988). Early versus delayed speech perception training for adult cochlear implant users: Initial results: Journal of the Academy of Rehabilitative Audiology Vol 21 1988, 29-41.
  • Lansing, C. R., & Seyfried, D. N. (1990). Longitudinal changes in personal adjustment to hearing loss in adult cochlear implant users: Journal of the Academy of Rehabilitative Audiology Vol 23 1990, 63-77.
  • Launer, S., Hohmann, V., & Kollmeier, B. (1997). Modeling loudness growth and loudness summation in hearing-impaired listeners. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Lecain, E., Yang, T.-H., & Ba Huy, P. T. (2003). Steroidogenic Enzyme Expression in the Rat Cochlea: Acta Oto-Laryngologica Vol 123(2) 2003, 187-191.
  • Leder, S., Spitzer, J., Richardson, F., & Murray, M. (1988). Sensory rehabilitation of the adventitiously deafened: Use of assistive communication and alerting devices: Volta Review Vol 90(1) Jan 1988, 19-24.
  • Leder, S. B., Spitzer, J. B., Flevaris-Phillips, C., Richardson, F., & et al. (1987). Innovative approaches to selection of adult cochlear implant candidates: Journal of Rehabilitation of the Deaf Vol 21(2) Oct 1987, 27-33.
  • Lee, A., Kimberley, B., & Brown, D. (1993). Developing distortion product emission measurements for clinical applications: Journal of Speech-Language Pathology and Audiology Vol 17(1) Mar 1993, 15-25.
  • Leek, M. R., & Summers, V. (1997). Timbre discrimination by hearing-impaired listeners. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Legouix, J. P., Joannes, M., & Saulnier, C. (1985). Variability in the depression of cochlear microphonic responses after noise exposure: Audiology Vol 24(3) May-Jun 1985, 227-231.
  • Legouix, J. P., & Pierson, A. (1973). Mechanism of the short-term poststimulatory depression of the cochlear microphonics (hysteresis): Journal of the Acoustical Society of America Vol 54(1) Jul 1973, 16-21.
  • Lenhardt, M. L. (1985). Preyer reflex in jaundiced rats: Central auditory effects: Journal of Auditory Research Vol 25(3) Jul 1985, 161-166.
  • Lewis, D. (1940). Support for the exploring tone method of measuring aural harmonics: Psychological Review Vol 47(2) Mar 1940, 169-183.
  • Liang, G. H., Jarlebark, L., Ulfendahl, M., & Moore, E. J. (2003). Mercury (Hg-super(2+)) suppression of potassium currents of outer hair cells: Neurotoxicology and Teratology Vol 25(3) May-Jun 2003, 349-359.
  • Liberman, M. C. (1982). Single-neuron labeling in the cat auditory nerve: Science Vol 216(4551) Jun 1982, 1239-1240.
  • Lim, H. H., Tong, Y. C., & Clark, G. M. (1989). Forward masking patterns produced by intracochlear electrical stimulation of one and two electrode pairs in the human cochlea: Journal of the Acoustical Society of America Vol 86(3) Sep 1989, 971-980.
  • Lin, T., & Goldstein, J. L. (1997). Implementation of the MBPNL nonlinear cochlear I/O model in the C programming language, and applications for modeling impaired auditory function. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Lipscomb, D. M., & et al. (1977). The effect of high level sound on hearing sensitivity, cochlear sensorineuroepithelium and vasculature of the chinchilla: Acta Oto-Laryngologica Vol 84(1-2) Jul-Aug 1977, 44-56.
  • Liu, F. (2007). The molecular mechanism regulating the timing of cell cycle exit during development of the mouse organ of corti. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Loeb, G. E. (1985). The functional replacement of the ear: Scientific American Vol 252(2) Feb 1985, 104-111.
  • Lorenzi, C., Husson, M., Ardoint, M., & Debruille, X. (2006). Speech masking release in listeners with flat hearing loss: Effects of masker fluctuation rate on identification scores and phonetic feature reception: International Journal of Audiology Vol 45(9) Sep 2006, 487-495.
  • Louage, D. H. G., Joris, P. X., & van der Heijden, M. (2006). Decorrelation Sensitivity of Auditory Nerve and Anteroventral Cochlear Nucleus Fibers to Broadband and Narrowband Noise: Journal of Neuroscience Vol 26(1) Jan 2006, 96-108.
  • Lucchina, G. G., & Chambers, A. H. (1966). Effects of dinitrophenol on cochlear potentials of the cat: II. Acoustically injured ear: Journal of Auditory Research 6(1) 1966, 23-30.
  • Lundquist, P. G., Kimura, R., & Wersall, J. (1964). Ultrastructural organization of the epithelial lining in the endolymphatic duct and sac in the guinea pig: Acta Oto-Laryngologica, Stockholm 57 1964, 65-80.
  • Luz, G. A., & Lipscomb, D. M. (1973). Susceptibility to damage from impulse noise: Chinchilla versus man or monkey: Journal of the Acoustical Society of America Vol 54(6) Dec 1973, 1750-1754.
  • Lynch, A. (1992). Paediatric cochlear implantation: A challenging ethical dilemma: Journal of Speech-Language Pathology and Audiology Vol 16(4) Dec 1992, 313-324.
  • Maeda, Y., Fukushima, K., Kawasaki, A., Nishizaki, K., & Smith, R. J. H. (2007). Cochlear expression of a dominant-negative GJB2-sub(R75W) construct delivered through the round window membrane in mice: Neuroscience Research Vol 58(3) Jul 2007, 250-254.
  • Maguin, K., Lataye, R., Campo, P., Cossec, B., Burgart, M., & Waniusiow, D. (2006). Ototoxicity of the three xylene isomers in the rat: Neurotoxicology and Teratology Vol 28(6) Nov-Dec 2006, 648-656.
  • Mair, I. W., Elverland, H. H., & Laukli, E. (1978). Development of early auditory-evoked responses in the cat: Audiology Vol 17(6) 1978, 469-488.
  • Maison, S., Micheyl, C., & Collet, L. (2001). Influence of focused auditory attention on cochlear activity in humans: Psychophysiology Vol 38(1) Jan 2001, 35-40.
  • Mangabeira-Albernaz, P. L., Borges, A. C., & dos Reis, C. G. (1984). Audiological selection and evaluation of cochlear implant patients: Acta Oto-Laryngologica Suppl 411 1984, 165-167.
  • Manshio, D. T. (1974). The biochemical effects of auditory frequency and intensity upon the perilymph of the cochlea in the guinea pig: Dissertation Abstracts International.
  • Markuszka, J. (1976). The relative contributions of inner and outer hair cells to cochlear potentials and the discharge pattern of auditory nerve fibers in the guinea pig: Dissertation Abstracts International.
  • Marsh, R. A., Nataraj, K., Gans, D., Portfors, C. V., & Wenstrup, J. J. (2006). Auditory Responses in the Cochlear Nucleus of Awake Mustached Bats: Precursors to Spectral Integration in the Auditory Midbrain: Journal of Neurophysiology Vol 95(1) Jan 2006, 88-105.
  • Mason, R. A. (2001). Audiation, cochlear function, and the musical ear of Alfred Tomatis. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Masuda, M., Nagashima, R., Kanzaki, S., Fujioka, M., Ogita, K., & Ogawa, K. (2006). Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation: Brain Research Vol 1068(1) Jan 2006, 237-247.
  • Mattson, M. P. (2002). Return from deafness: Trends in Neurosciences Vol 25(5) May 2002, 231.
  • McCabe, B. F., & et al. (1984). Preliminary assessment of the Los Angeles, Vienna and Melbourne cochlear implants: Acta Oto-Laryngologica Suppl 411 1984, 247-253.
  • McDermott, H. J., & McKay, C. M. (1994). Pitch ranking with nonsimultaneous dual-electrode electrical stimulation of the cochlea: Journal of the Acoustical Society of America Vol 96(1) Jul 1994, 155-162.
  • McDermott, H. J., & McKay, C. M. (1997). Musical pitch perception with electrical stimulation of the cochlea: Journal of the Acoustical Society of America Vol 101(3) Mar 1997, 1622-1631.
  • McDermott, H. J., McKay, C. M., & Vandali, A. E. (1992). A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant: Journal of the Acoustical Society of America Vol 91(6) Jun 1992, 3367-3371.
  • McDermott, J. C. (1981). Cochlear initiation sites of the human auditory frequency following potentials: Dissertation Abstracts International.
  • McDermott, J. C. (1983). Cochlear initiation sites of the frequency following potential: Scandinavian Audiology Vol 12(2) 1983, 97-102.
  • McDowell, K. P. (1977). Auditory evoked response threshold shifts and surface damage to the organ of Corti in the chinchilla resulting from moderate intensity, long duration noise exposures: Dissertation Abstracts International.
  • McGee, T. J. (1979). Psychophysical tuning curves from hearing-impaired listeners: Dissertation Abstracts International.
  • McLaren, G. M. (1993). Alterations of labyrinthine and cerebrospinal fluid volumes influence laser doppler measurements of cochlear blood flow in the rat: Dissertation Abstracts International.
  • McNall, C. L., & Chambers, A. H. (1972). Effects of intracochlear pressure changes on cochlear potentials in the guinea pig: Journal of Auditory Research Vol 12(1) Jan 1972, 1-7.
  • Merzenich, M. M., Knight, P. L., & Roth, G. L. (1975). Representation of cochlea within primary auditory cortex in the cat: Journal of Neurophysiology Vol 38(2) Mar 1975, 231-249.
  • Meyer, B., Drira, M., Gegu, D., & Chouard, C. H. (1984). Results of the round window electrical stimulation in 460 cases of total deafness: Acta Oto-Laryngologica Suppl 411 1984, 168-176.
  • Meyer, B., Fugain, C., Chabolle, F., & Chouard, C. H. (1984). Patient selection: Acta Oto-Laryngologica Suppl 411 1984, 177-179.
  • Micheyl, C., & Collet, L. (1996). Involvement of the olivocochlear bundle in the detection of tones in noise: Journal of the Acoustical Society of America Vol 99(3) Mar 1996, 1604-1610.
  • Micheyl, C., Maison, S., Carlyon, R. P., Andeol, G., & Collet, L. (1999). Contralateral suppression of transiently evoked otoacoustic emissions by harmonic complex tones in humans: Journal of the Acoustical Society of America Vol 105(1) Jan 1999, 293-305.
  • Micheyl, C., Perrot, X., & Collet, L. (1997). Relationship between auditory intensity discrimination in noise and olivocochlear efferent system activity in humans: Behavioral Neuroscience Vol 111(4) Aug 1997, 801-807.
  • Mikaelian, D. (1964). Vestibular response to sound: Single unit recording from the vestibular nerve in fenestrated deaf mice (Df/Df): Acta Otolaryngologica 58(5) 1964, 409-422.
  • Miller, R. L., Schilling, J. R., Young, E. D., & Franck, K. R. (1997). Representation of the vowel /eh/ in the auditory nerve of cats with a noise-induced hearing loss. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Mills, D. M., Norton, S. J., & Rubel, E. W. (1993). Vulnerability and adaptation of distortion product otoacoustic emissions to endocochlear potential variation: Journal of the Acoustical Society of America Vol 94(4) Oct 1993, 2108-2122.
  • Mitchell, C. (1976). Frequency specificity of the N-sub-1 potential from the cochlear nerve under various stimulus conditions: Journal of Auditory Research Vol 16(4) 1976, 247-255.
  • Moffitt, C. E. (1908). Review of A restudy of the minute anatomy of structures in the cochlea with conclusions bearing on the problem of tone perception: Psychological Bulletin Vol 5(7) Jul 1908, 224-225.
  • Moleti, A., & Sisto, R. (2003). Objective estimates of cochlear tuning by otoacoustic emission analysis: Journal of the Acoustical Society of America Vol 113(1) Jan 2003, 423-429.
  • Moller, A. R. (1964). Effect of tympanic muscle activity on movement of the ear-drum, acoustic impedance and cochlear microphonics: Acta Otolaryngologica 58(6) 1964, 525-534.
  • Moller, A. R. (1974). Responses of units in the cochlear nucleus to sinusoidally amplitude-modulated tones: Experimental Neurology Vol 45(1) Oct 1974, 104-117.
  • Moller, A. R. (1981). Latency in the ascending auditory pathway determined using continuous sounds: Comparison between transient and envelope latency: Brain Research Vol 207(1) Feb 1981, 184-188.
  • Moller, A. R. (1987). Auditory evoked potentials to continuous amplitude-modulated sounds: Can they be described by linear models? : Electroencephalography & Clinical Neurophysiology Vol 66(1) Jan 1987, 56-65.
  • Money, K. E., & Cheung, B. S. (1983). Another function of the inner ear: Facilitation of the emetic response to poisons: Aviation, Space, and Environmental Medicine Vol 54(3) Mar 1983, 208-211.
  • Moog, J. S., & Geers, A. E. (1991). Educational management of children with cochlear implants: American Annals of the Deaf Vol 136(2) Apr 1991, 69-76.
  • Moore, B. C. (1986). Parallels between frequency selectivity measured psychophysically and in cochlear mechanics: Scandinavian Audiology Suppl 25 1986, 139-152.
  • Moore, B. C. J. (1995). Perceptual consequences of cochlear damage. New York, NY: Oxford University Press.
  • Moore, B. C. J. (2006). Factors Affecting Speech Intelligibility for People With Cochlear Hearing Loss. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Moore, B. C. J., Glasberg, B. R., & Vickers, D. A. (1999). Further evaluation of a model of loudness perception applied to cochlear hearing loss: Journal of the Acoustical Society of America Vol 106(2) Aug 1999, 898-907.
  • Moore, B. C. J., Killen, T., & Munro, K. J. (2003). Application of the TEN test to hearing-impaired teenagers with severe-to-profound hearing loss: International Journal of Audiology Vol 42(8) Dec 2003, 465-474.
  • Moore, B. C. J., & Oxenham, A. J. (1998). Psychoacoustic consequences of compression in the peripheral auditory system: Psychological Review Vol 105(1) Jan 1998, 108-124.
  • Moore, B. C. J., & Skrodzka, E. (2002). Detection of frequency modulation by hearing-impaired listeners: Effects of carrier frequency, modulation rate, and added amplitude modulation: Journal of the Acoustical Society of America Vol 111(1,Pt1) Jan 2002, 327-335.
  • Moore, B. C. J., Vickers, D. A., Plack, C. J., & Oxenham, A. J. (1999). Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism: Journal of the Acoustical Society of America Vol 106(5) Nov 1999, 2761-2778.
  • Moore, D. R. (1981). Development of the cat peripheral auditory system: Input-output functions of cochlear potentials: Brain Research Vol 219(1) Aug 1981, 29-44.
  • Moore, D. R., & Irvine, D. R. (1979). The development of some peripheral and central auditory responses in the neonatal cat: Brain Research Vol 163(1) Mar 1979, 49-59.
  • Moore, M. J. (1981). Response latencies following masked-tone stimulation before and after COCB lesion in the rat: Dissertation Abstracts International.
  • Morand-Villeneuve, N., Garnier, S., Grimault, N., Veuillet, E., Collet, L., & Micheyl, C. (2002). Medial olivocochlear bundle activation and perceived auditory intensity in humans: Physiology & Behavior Vol 77(2-3) 2002, 311-320.
  • Morel, D., Charachon, R., & Genin, J. (1984). Cochlear prosthesis: Clinical results: Acta Oto-Laryngologica Suppl 411 1984, 254-256.
  • Morgon, A., & et al. (1984). Cochlear implant: Experience of the Lyon team: Acta Oto-Laryngologica Suppl 411 1984, 195-203.
  • Mori, N., Matsunaga, T., & Asai, H. (1981). Intertest reliability in non-invasive electrocochleography: Audiology Vol 20(4) Jul-Aug 1981, 290-299.
  • Morlet, T., Durrant, J. D., Lapillonne, A., Putet, G., Collet, L., & Duclaux, R. (2003). Development of Auditory Asymmetry in Transient Evoked Otoacoustic Emissions in Pre-Term Infants: Journal of the American Academy of Audiology Vol 14(6) Aug 2003, 339-346.
  • Muller, C. G. (1983). Comparison of percepts found with cochlear implant devices: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 412-420.
  • Mulroy, M. J., Altmann, D. W., Weiss, T. F., & Peake, W. T. (1974). Intracellular electric responses to sound in a vertebrate cochlea: Nature Vol 249(5456) May 1974, 482-485.
  • Munro, K. J., Felthouse, C., Moore, B. C. J., & Kapadia, S. (2005). Reassessment of cochlear dead regions in hearing-impaired teenagers with severe-to-profound hearing loss: International Journal of Audiology Vol 44(8) Aug 2005, 470-477.
  • Musiek, F. E., Baran, J. A., & Pinheiro, M. L. (1990). Duration pattern recognition in normal subjects and patients with cerebral and cochlear lesions: Audiology Vol 29(6) Nov-Dec 1990, 304-313.
  • Nager, C., Storck, J., & Deco, G. (2002). Speech recognition with spiking neurons and dynamic synapses: A model motivated by the human auditory pathway: Neurocomputing: An International Journal Vol 44-46 Jun 2002, 937-942.
  • Needham, K., & Paolini, A. G. (2003). Fast Inhibition Underlies the Transmission of Auditory Information between Cochlear Nuclei: Journal of Neuroscience Vol 23(15) Aug 2003, 6357-6361.
  • Needham, K., & Paolini, A. G. (2007). The commissural pathway and cochlear nucleus bushy neurons: An in vivo intracellular investigation: Brain Research Vol 1134 Feb 2007, 113-121.
  • Neely, S. T., & Allen, J. B. (1997). Relation between the rate of growth of loudness and the intensity DL. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Neff, W. D. (1947). The effects of partial section of the auditory nerve: Journal of Comparative and Physiological Psychology Vol 40(4) Aug 1947, 203-215.
  • Neff, W. D., & Casseday, J. H. (1977). Effects of unilateral ablation of auditory cortex on monaural cat's ability to localize sound: Journal of Neurophysiology Vol 40(1) Jan 1977, 44-52.
  • Nejime, Y., & Moore, B. C. J. (1998). Evaluation of the effect of speech-rate slowing on speech intelligibility in noise using a simulation of cochlear hearing loss: Journal of the Acoustical Society of America Vol 103(1) Jan 1998, 572-576.
  • Nelson, D. A., & Kimberley, B. P. (1992). Distortion-product emissions and auditory sensitivity in human ears with normal hearing and cochlear hearing loss: Journal of Speech & Hearing Research Vol 35(5) Oct 1992, 1142-1159.
  • Neuert, V., Verhey, J. L., & Winter, I. M. (2004). Responses of Dorsal Cochlear Nucleus Neurons to Signals in the Presence of Modulated Maskers: Journal of Neuroscience Vol 24(25) Jun 2004, 5789-5797.
  • Newlands, S. D., & Perachio, A. A. (2003). Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil: Brain Research Bulletin Vol 60(5-6) Jun 2003, 475-495.
  • Nicol, K. M. M. (1993). Correlated behavioural and anatomical studies of auditory function in normal and hearing impaired guinea pigs. (Volumes I and II): Dissertation Abstracts International.
  • Nienhuys, T. G., & Clark, G. M. (1978). Frequency discrimination following the selective destruction of cochlear inner and outer hair cells: Science Vol 199(4335) Mar 1978, 1356-1357.
  • Nieschalk, M., Hustert, B., & Stoll, W. (1998). Distortion-product otoacoustic emissions in middle-aged subjects with normal versus potentially presbyacusic high-frequency hearing loss: Audiology Vol 37(2) Mar-Apr 1998, 83-99.
  • Niu, X., Shao, R., & Canlon, B. (2003). Suppression of apoptosis occurs in the cochlea by sound conditioning: Neuroreport: For Rapid Communication of Neuroscience Research Vol 14(7) May 2003, 1025-1029.
  • No authorship, i. (1901). Review of On a Modification of the Helmholtz Theory of Hearing: Psychological Review Vol 8(2) Mar 1901, 217-219.
  • Noble, W. G., & Atherley, G. R. (1970). The Hearing Measurement Scale: A questionnaire for the assessment of auditory disability: Journal of Auditory Research Vol 10(3) Jul 1970, 229-250.
  • Nordeen, K. W., & Nordeen, E. J. (1992). Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches: Behavioral & Neural Biology Vol 57(1) Jan 1992, 58-66.
  • Nuttall, A. L. (1974). Comparison of cochlear microphonic potentials from albino and pigmented guinea pigs: Acta Oto-Laryngologica Vol 78(3-4) Sep-Oct 1974, 187-191.
  • Oakland, S. F. (1980). A new nonlinear model of the cochlea: Dissertation Abstracts International.
  • O'Connor, C. A., Coligado, E. J., Wiet, R. J., & Sahgal, V. (1992). Multichannel cochlear implantation in a severely disabled traumatic brain injury patient: A case study: Journal of the Academy of Rehabilitative Audiology Vol 25 1992, 33-42.
  • Oei, M. L. Y. M., Segenhout, J. M., Wit, H. P., & Albers, F. W. J. (2001). The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function: Acta Oto-Laryngologica Vol 121(1) Jan 2001, 62-67.
  • Oertel, D., & Young, E. D. (2004). What's a cerebellar circuit doing in the auditory system? : Trends in Neurosciences Vol 27(2) Feb 2004, 104-110.
  • Orr, J. L. (1980). Behavioral toxicology of kanamycin: Dissertation Abstracts International.
  • Overstreet, E. H., III, Richter, C.-P., Temchin, A. N., Cheatham, M. A., & Ruggero, M. A. (2003). High-frequency sensitivity of the mature gerbil cochlea and its development: Audiology & Neurotology Vol 8(1) Jan-Feb 2003, 19-27.
  • Owens, E. (1964). Bekesy tracings and site of lesion: Journal of Speech & Hearing Disorders 29(4) 1964, 456-468.
  • Owens, E. (1964). Tone decay in 8th nerve and cochlear lesions: Journal of Speech & Hearing Disorders 29(1) 1964, 14-22.
  • Owens, E., Kessler, D., & Raggio, M. (1983). Results for some patients with cochlear implants on the Minimal Auditory Capabilities (MAC) battery: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 443-450.
  • Oxenham, A. J., & Moore, B. C. J. (1997). Modeling the effects of peripheral nonlinearity in listeners with normal and impaired hearing. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Palmer, A. R., & Harrison, R. V. (1985). Suppression by tones of the click evoked compound action potential in the normal and pathological guinea-pig cochlea and in man: Scandinavian Audiology Vol 14(2) 1985, 67-74.
  • Paolini, A. G., Clarey, J. C., Needham, K., & Clark, G. M. (2005). Balanced inhibition and excitation underlies spike firing regularity in ventral cochlear nucleus chopper neurons: European Journal of Neuroscience Vol 21(5) Mar 2005, 1236-1248.
  • Paolini, A. G., & Clark, G. M. (1998). Intracellular responses of the rat anteroventral cochlear nucleus to intracochlear electrical stimulation: Brain Research Bulletin Vol 46(4) 1998, 317-327.
  • Paolini, A. G., Clark, G. M., & Burkitt, A. N. (1997). Intracellular responses of the rat cochlear nucleus to sound and its role in temporal coding: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 8(15) Oct 1997, 3415-3421.
  • Parham, K., & Kim, D. O. (1995). Spontaneous and sound-evoked discharge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrate cat: Journal of Neurophysiology Vol 73(2) Feb 1995, 550-561.
  • Parisier, S. C., Chute, P. M., & Kramer, S. F. (1984). Results of cochlear implants: I: Hearing Rehabilitation Quarterly Vol 9(3) 1984, 4-6, 16.
  • Park, M. S., & Lee, J. H. (1998). Diagnostic potential of distortion product otoacoustic emissions in severe or profound sensorineural hearing loss: Acta Oto-Laryngologica Vol 118(4) 1998, 496-500.
  • Parker, D. J., & Thornton, A. R. (1978). Frequency specific components of the cochlear nerve and brainstem evoked responses of the human auditory system: Scandinavian Audiology Vol 7(1) 1978, 53-60.
  • Parthasarathi, A. A., Grosh, K., & Nuttall, A. L. (2000). Three-dimensional numerical modeling for global cochlear dynamics: Journal of the Acoustical Society of America Vol 107(1) Jan 2000, 474-485.
  • Parving, A., Elberling, C., & Smith, T. (1981). Auditory electrophysiology: Findings in multiple sclerosis: Audiology Vol 20(2) Mar-Apr 1981, 123-142.
  • Patchett, R. F. (1980). The effect of oxygen inhalation on temporary threshold shift in humans: Journal of Auditory Research Vol 20(3) Jul 1980, 227-231.
  • Pedersen, C. B. (1974). Brief-tone audiometry in persons treated with salicylate: Audiology Vol 13(4) Jul 1974, 311-319.
  • Pena, J. L., Viete, S., Funabiki, K., Saberi, K., & Konishi, M. (2001). Cochlear and neural delays for coincidence detection in owls: Journal of Neuroscience Vol 21(23) Dec 2001, 9455-9459.
  • Peng, J.-H., Tao, Z.-Z., & Huang, Z.-W. (2007). Long-term sound conditioning increases distortion product otoacoustic emission amplitudes and decreases olivocochlear efferent reflex strength: Neuroreport: For Rapid Communication of Neuroscience Research Vol 18(11) Jul 2007, 1167-1170.
  • Penny, J. E., & et al. (1983). Cochlear morphology of the audiogenic-seizure susceptible (AGS) or genetically epilepsy prone rat (GEPR): Acta Oto-Laryngologica Vol 95(1-2) Jan-Feb 1983, 1-12.
  • Perlin, S. (1946). The width of the basilar membrane in the guinea pig: Journal of Experimental Psychology Vol 36(2) Apr 1946, 127-133.
  • Perrot, X., Ryvlin, P., Isnard, J., Guenot, M., Catenoix, H., Fischer, C., et al. (2006). Evidence for Corticofugal Modulation of Peripheral Auditory Activity in Humans: Cerebral Cortex Vol 16(7) Jul 2006, 941-948.
  • Peterson, E. A., Pate, W. E., & Wruble, S. D. (1966). Cochlear potentials in the dog: I. Differences with variations in external-ear structure: Journal of Auditory Research 6(1) 1966, 1-11.
  • Peterson, J. (1913). The place of stimulation in the cochlea versus frequency as a direct determiner of pitch: Psychological Review Vol 20(4) Jul 1913, 312-322.
  • Pfeiffer, R. R., & Kim, D. O. (1972). Response patterns of single cochlear nerve fibers to click stimuli: Descriptions for cat: Journal of the Acoustical Society of America Vol 52(6, Pt 2) Dec 1972, 1669-1677.
  • Pfingst, B. E., de Haan, D. R., & Holloway, L. A. (1991). Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea: I. Phase duration and stimulus duration: Journal of the Acoustical Society of America Vol 90(4, Pt 1) Oct 1991, 1857-1866.
  • Pfingst, B. E., & Morris, D. J. (1993). Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea: II. Frequency and interpulse interval: Journal of the Acoustical Society of America Vol 94(3, Pt 1) Sep 1993, 1287-1294.
  • Phillips, A. L. (1992). "Future directions for cochlear implants": Peer commentary: Journal of Speech-Language Pathology and Audiology Vol 16(2) Jun 1992, 165-166.
  • Phillips, D. P. (1987). Stimulus intensity and loudness recruitment: Neural correlates: Journal of the Acoustical Society of America Vol 82(1) Jul 1987, 1-12.
  • Phillips, D. P., & Hall, S. E. (2000). Independence of frequency channels in auditory temporal gap detection: Journal of the Acoustical Society of America Vol 108(6) Dec 2000, 2957-2963.
  • Phillips, D. P., Stuart, A., & Carpenter, M. (2002). Re-examination of the role of the human acoustic stapedius reflex: Journal of the Acoustical Society of America Vol 111(5,Pt1) May 2002, 2200-2207.
  • Phillips, D. P., Taylor, T. L., Hall, S. E., & Carr, M. M. (1997). Detection of silent intervals between noises activating different perceptual channels: Some properties of "central" auditory gap detection: Journal of the Acoustical Society of America Vol 101(6) Jun 1997, 3694-3705.
  • Pickett, J. M. (1983). Theoretical considerations in testing speech perception through electroauditory stimulation: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 424-434.
  • Pickles, J. O. (1975). Normal critical bands in the cat: Acta Oto-Laryngologica Vol 80(3-4) Sep-Oct 1975, 245-254.
  • Pickles, J. O. (1976). The noradrenaline-containing innervation of the cochlear nucleus and the detection of signals in noise: Brain Research Vol 105(3) 1976, 591-596.
  • Pickles, J. O. (2004). Mutation in Mitochondrial DNA as a Cause of Presbyacusis: Audiology & Neurotology Vol 9(1) Jan-Feb 2004, 23-33.
  • Pickles, J. O., & Comis, S. D. (1973). Role of centrifugal pathways to cochlear nucleus in detection of signals in noise: Journal of Neurophysiology Vol 36(6) Nov 1973, 1131-1137.
  • Pierson, L. L. (1995). Effects of intense noise on the fetal sheep auditory mechanism as assessed by auditory brainstem response and cochlear histology. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Pinheiro, M., Jordan, V., & Luz, G. A. (1973). The relationship between permanent threshold shift and the loss of hair cells in monkeys exposed to impulse noise: Acta Oto-Laryngologica Suppl 312 1973, 31-40.
  • Plack, C. J., Oxenham, A. J., & Drga, V. (2006). Masking by Inaudible Sounds and the Linearity of Temporal Summation: Journal of Neuroscience Vol 26(34) Aug 2006, 8767-8773.
  • Plassmann, W., Peetz, W., & Schmidt, M. (1987). The cochlea in gerbilline rodents: Brain, Behavior and Evolution Vol 30(1-2) Jan-Apr 1987, 82-101.
  • Plazas, P. V., Katz, E., Gomez-Casati, M. E., Bouzat, C., & Elgoyhen, A. B. (2005). Stoichiometry of the alpha 9alpha 10 Nicotinic Cholinergic Receptor: Journal of Neuroscience Vol 25(47) Nov 2005, 10905-10912.
  • Ponomarenko, G. N., Samoilov, V. O., & Kropotov, S. P. (1993). Effect of low-frequency acoustic signals on metabolic systems of the stria vascularis: Sensory Systems Vol 7(2) Apr-Jun 1993, 78-81.
  • Popelar, J., Groh, D., & Syka, J. (2005). Age-Related Changes in Cochlear Function in Young and Adult Fischer 344 Rats. New York, NY: Springer Publishing Co.
  • Popelka, G. R., & Gittelman, D. A. (1984). Audiologic findings in a child with a single-channel cochlear implant: Journal of Speech & Hearing Disorders Vol 49(3) Aug 1984, 254-261.
  • Popelka, G. R., & Gittelman, D. A. (1986). Reply to Eisenberg et al: Journal of Speech & Hearing Disorders Vol 51(2) May 1986, 182.
  • Pratt, H., & Sohmer, H. (1978). Comparison of hearing threshold determined by auditory pathway electric responses and by behavioural responses: Audiology Vol 17(4) Jul-Aug 1978, 285-292.
  • Pratt, H., Sohmer, H., & Barazani, N. (1978). Surface-recorded cochlear microphonic potentials during temporary threshold shifts in man: Audiology Vol 17(3) May-Jun 1978, 204-212.
  • Preece, J. P., & Tyler, R. S. (1989). Temporal-gap detection by cochlear prosthesis users: Journal of Speech & Hearing Research Vol 32(4) Dec 1989, 849-856.
  • Preyer, S., & Gummer, A. W. (1996). Nonlinearity of mechanoelectrical transduction of outer hair cells as the source of nonlinear basilar-membrane motion and loudness recruitment: Audiology & Neurotology Vol 1(1) Jan-Feb 1996, 3-11.
  • Price, G. R. (1970). The sensitivity of the rat ear reexamined through the cochlear microphonic: Journal of Auditory Research Vol 10(4) Oct 1970, 340-348.
  • Price, J. M. (1995). Contralateral stimulation effects on masking phenomena in the auditory system of the gerbil, meriones unguiculatus. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Prosen, C. A. (1980). Absolute and intensity difference thresholds in the guinea pig before and after aminoglycoside-treatment and cochlear injury: Dissertation Abstracts International.
  • Prosen, C. A., Moody, D. B., Stebbins, W. C., & Hawkins, J. E. (1981). Auditory intensity discrimination after selective loss of cochlear outer hair cells: Science Vol 212(4500) Jun 1981, 1286-1288.
  • Puel, J.-L., Bonfils, P., & Pujol, R. (1988). Selective attention modifies the active micromechanical properties of the cochlea: Brain Research Vol 447(2) May 1988, 380-383.
  • Pye, A. (1974). Acoustic trauma after double exposure in mammals: Audiology Vol 13(4) Jul 1974, 320-325.
  • Quaranta, A., Scaringi, A., Sallustio, V., & Quaranta, N. (2002). Cochlear function in ears with immunomediated inner ear disorder: Acta Oto-Laryngologica Vol 122(5,Suppl548) 2002, 15-19.
  • Quinonez, R. E., & Crawford, M. R. (1998). Longitudinal distortion product otoacoustic emission (DPE) latency changes in preterm neonates: Acta Oto-Laryngologica Vol 118(1) 1998, 26-31.
  • Rabinowitz, W. M., Eddington, D. K., Delhorne, L. A., & Cuneo, P. A. (1992). Relations among different measures of speech reception in subjects using a cochlear implant: Journal of the Acoustical Society of America Vol 92(4, Pt 1) Oct 1992, 1869-1881.
  • Radionova, E. A., & Vartanian, I. A. (1971). Comparative description of some characteristics of the neuronal activity at different levels of the auditory system: Journal of Auditory Research Vol 11(3) Jul 1971, 195-217.
  • Raggio, M. W., & Schreiner, C. E. (1999). Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness: Journal of Neurophysiology Vol 82(6) Dec 1999, 3506-3526.
  • Rajan, R. (2000). Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound: Journal of Neuroscience Vol 20(17) Sep 2000, 6684-6693.
  • Rajan, R. (2005). Contextual Modulation of Olivocochlear Pathway Effects on Loud Sound-Induced Cochlear Hearing Desensitization: Journal of Neurophysiology Vol 93(4) Apr 2005, 1977-1988.
  • Rajan, R. (2005). Small Cochlear Damage Causes Unmasking and Plasticity in Supra- Threshold Cortical Responses. New York, NY: Springer Publishing Co.
  • Rajan, R. (2006). Bandwidth determines modulatory effects of centrifugal pathways on cochlear hearing desensitization caused by loud sound: European Journal of Neuroscience Vol 24(12) Dec 2006, 3589-3600.
  • Raphael, Y., & Altschuler, R. A. (2003). Structure and innervation of the cochlea: Brain Research Bulletin Vol 60(5-6) Jun 2003, 397-422.
  • Rawdon-Smith, A. F., Carmichael, L., & Wellman, B. (1938). Electrical responses from the cochlea of the fetal guinea pig: Journal of Experimental Psychology Vol 23(5) Nov 1938, 531-535.
  • Rebillard, G., & Rubel, E. W. (1981). Electrophysiological study of the maturation of auditory responses from the inner ear of the chick: Brain Research Vol 229(1) Dec 1981, 15-23.
  • Recio, A. (2001). Representation of harmonic complex stimuli in the ventral cochlear nucleus of the chinchilla: Journal of the Acoustical Society of America Vol 110(4) Oct 2001, 2024-2033.
  • Recio, A., Rhode, W. S., Kiefte, M., & Kluender, K. R. (2002). Responses to cochlear normalized speech stimuli in the auditory nerve of cat: Journal of the Acoustical Society of America Vol 111(5,Pt1) May 2002, 2213-2218.
  • Reiss, L. A. J., & Young, E. D. (2005). Spectral Edge Sensitivity in Neural Circuits of the Dorsal Cochlear Nucleus: Journal of Neuroscience Vol 25(14) Apr 2005, 3680-3691.
  • Rhode, W. S., & Robles, L. (1974). Evidence from Mossbauer experiments for nonlinear vibration in the cochlea: Journal of the Acoustical Society of America Vol 55(3) Mar 1974, 588-596.
  • Rimskaya-Korsakova, L. K., & Dubrovskii, N. A. (1998). Involvement of two sound conduction pathways to the cochlea in forming spatial sound images in dolphins: Sensory Systems Vol 12(4) Oct-Dec 1998, 369-375.
  • Robbins, A. M., & et al. (1985). Speech-tracking performance in single-channel cochlear implant subjects: Journal of Speech & Hearing Research Vol 28(4) Dec 1985, 565-578.
  • Robbins, A. M., Osberger, M. J., Miyamoto, R. T., Renshaw, J. J., & et al. (1988). Longitudinal study of speech perception by children with cochlear implants and tactile aids: Progress report: Journal of the Academy of Rehabilitative Audiology Vol 21 1988, 11-28.
  • Romand, R., & Marty, R. (1975). Postnatal maturation of the cochlear nuclei in the cat: A neurophysiological study: Brain Research Vol 83(2) 1975, 225-233.
  • Rose, J. E., Kitzes, L. M., Gibson, M. M., & Hind, J. E. (1974). Observations on phase-sensitive neurons of anteroventral cochlear nucleus of the cat: Nonlinearity of cochlear output: Journal of Neurophysiology Vol 37(1) Jan 1974, 218-253.
  • Rossi, G., Voena, G., Cortesina, G., & Buongiovanni, S. (1964). Changes in the cochlear-microphonic potential due to resection of the efferent cochlear fibers: Journal of the Acoustical Society of America 36(10) 1964, 1845-1849.
  • Rubel, E. W., & Fritzsch, B. (2002). Auditory system development: Primary auditory neurons and their targets: Annual Review of Neuroscience Vol 25 2002, 51-101.
  • Rubel, E. W., & Ryals, B. M. (1983). Development of the place principle: Acoustic trauma: Science Vol 219(4584) Feb 1983, 512-514.
  • Rubinstein, M., Hildesheimer, M., & Perlstein, T. P. (1976). The influence of efferent fibers on cochlear electrical activity: Journal of Auditory Research Vol 16(4) Oct 1976, 289-297.
  • Ruckmick, C. A. (1937). In reply to Wever and Bray: Psychological Bulletin Vol 34(1) Jan 1937, 44-47.
  • Russell, I. J. (1983). Origin of the receptor potential in inner hair cells of the mammalian cochlea--evidence for Davis' theory: Nature Vol 301(5898) Jan-Feb 1983, 334-336.
  • Russell, I. J., Drexl, M., Foeller, E., Vater, M., & Kossl, M. (2003). The Development of a Single Frequency Place in the Mammalian Cochlea: The Cochlear Resonance in the Mustached Bat Pteronotus parnellii: Journal of Neuroscience Vol 23(34) Nov 2003, 10971-10981.
  • Russell, I. J., Drexl, M., Foeller, E., Vater, M., & Kossl, M. (2003). Synchronization of a Nonlinear Oscillator: Processing the Cf Component of the Echo-Response Signal in the Cochlea of the Mustached Bat: Journal of Neuroscience Vol 23(29) Oct 2003, 9508-9518.
  • Russell, I. J., & Kossl, M. (1999). Micromechanical responses to tones in the auditory fovea of the greater mustached bat's cochlea: Journal of Neurophysiology Vol 82(2) Aug 1999, 676-686.
  • Russolo, M., & Poli, P. (1983). Lateralization, impedance, auditory brain stem response and synthetic sentence audiometry in brain stem disorders: Audiology Vol 22(1) Jan-Feb 1983, 50-62.
  • Ryals, B. M. (1982). Ontogenic effects of acoustic trauma in chick basilar papilla: Dissertation Abstracts International.
  • Ryan, A., & Dallos, P. (1975). Effect of absence of cochlear outer hair cells on behavioural auditory threshold: Nature Vol 253(5486) Jan 1975, 44-45.
  • Ryan, A. F., Goodwin, P., Woolf, N. K., & Sharp, F. R. (1982). Auditory stimulation alters the pattern of 2-deoxy-glucose uptake in the inner ear: Brain Research Vol 234(2) Feb 1982, 213-225.
  • Ryugo, D. K., & Parks, T. N. (2003). Primary innervation of the avian and mammalian cochlear nucleus: Brain Research Bulletin Vol 60(5-6) Jun 2003, 435-456.
  • Safieddine, S., & Eybalin, M. (1995). Expression of mGluR1alpha mRNA receptor in rat and guinea pig cochlear neurons: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 7(1) Dec 1995, 193-196.
  • Sagalovitch, B. M., & Malinkin, V. B. (1978). The significance of nonlinear distortions in the cochlear for perception of sonic and ultrasonic stimuli: Fiziologicheskii Zhurnal SSSR im I M Sechenova Vol 64(6) Jun 1978, 737-740.
  • Salvi, R. J. (1976). The effects of TTS-producing tones on single neurons in the cochlear nucleus of the chinchilla: Dissertation Abstracts International.
  • Sanes, D. H., & Constantine-Paton, M. (1985). The development of stimulus following in the cochlear nerve and inferior colliculus of the mouse: Developmental Brain Research Vol 22(2) Oct 1985, 255-267.
  • Saunders, J. C., Bock, G. R., Chen, C.-S., & Gates, G. R. (1972). The effects of priming for audiogenic seizures on cochlear and behavioral responses in BALB/c mice: Experimental Neurology Vol 36(3) Sep 1972, 426-436.
  • Saunders, J. C., & Hirsch, K. A. (1976). Changes in cochlear microphonic sensitivity after priming C57BL/6J mice at various ages for audiogenic seizures: Journal of Comparative and Physiological Psychology Vol 90(2) Feb 1976, 212-220.
  • Saunders, J. C., Ventetuolo, C. E., Plontke, S. K. R., & Weiss, B. A. (2002). Coding of Sound Intensity in the Chick Cochlear Nerve: Journal of Neurophysiology Vol 88(6) Dec 2002, 2887-2898.
  • Schairer, K. S., Fitzpatrick, D., & Keefe, D. H. (2003). Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears: Journal of the Acoustical Society of America Vol 114(2) Aug 2003, 944-966.
  • Schein, J. D. (1984). Cochlear implants and the education of deaf children: American Annals of the Deaf Vol 129(3) Jun 1984, 324-332.
  • Schmidt, P. H., & Spoor, A. U. (1974). The place of electrocochleography in clinical audiometry: Acta Oto-Laryngologica Suppl 316 1974, 5-6.
  • Schmiedt, R. A. (1978). Single- and two-tone effects in normal and abnormal cochleas: A study of cochlear microphonics and auditory-nerve units: Dissertation Abstracts International.
  • Schmiedt, R. A. (1993). Cochlear potentials in quiet-aged gerbils: Does the aging cochlea need a jump start? Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.
  • Schmiedt, R. A., Lang, H., Okamura, H.-o., & Schulte, B. A. (2002). Effects of Furosemide Applied Chronically to the Round Window: A Model of Metabolic Presbyacusis: Journal of Neuroscience Vol 22(21) Nov 2002, 9643-9650.
  • Schoonhoven, R., Lamore, P. J. J., de Laat, J. A. P. M., & Grote, J. J. (1999). The prognostic value of electrocochleography in severely hearing-impaired infants: Audiology Vol 38(3) May-Jun 1999, 141-154.
  • Schroder, A. C., Viemeister, N. F., & Nelson, D. A. (1994). Intensity discrimination in normal-hearing and hearing-impaired listeners: Journal of the Acoustical Society of America Vol 96(5, Pt 1) Nov 1994, 2683-2693.
  • Sek, A., Alcantara, J., Moore, B. C. J., Kluk, K., & Wicher, A. (2005). Development of a fast method for determining psychophysical tuning curves: International Journal of Audiology Vol 44(7) Jul 2005, 408-420.
  • Seligman, P. M., & et al. (1984). A signal processor for a multiple-electrode hearing prosthesis: Acta Oto-Laryngologica Suppl 411 1984, 135-139.
  • Shallop, J. K., Arndt, P. L., & Turnacliff, K. A. (1992). Expanded indications for cochlear implantation: Perceptual results in seven adults with residual hearing: Journal of Speech-Language Pathology and Audiology Vol 16(2) Jun 1992, 141-148.
  • Shamma, S. A., Shen, N., & Gopalaswamy, P. (1989). Stereausis: Binaural processing without neural delays: Journal of the Acoustical Society of America Vol 86(3) Sep 1989, 989-1006.
  • Shannon, R. V. (1989). Detection of gaps in sinusoids and pulse trains by patients with cochlear implants: Journal of the Acoustical Society of America Vol 85(6) Jun 1989, 2587-2592.
  • Shannon, R. V. (1992). Temporal modulation transfer functions in patients with cochlear implants: Journal of the Acoustical Society of America Vol 91(4, Pt 1) Apr 1992, 2156-2164.
  • Shannon, R. V., Fu, Q.-J., Zeng, F.-G., & Wygonski, J. (2006). Prosthetic Hearing: Implications for Pattern Recognition in Speech. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Shephard, R. K., Clark, G. M., & Black, R. C. (1983). Chronic electrical stimulation of the auditory nerve in cats: Acta Oto-Laryngologica Suppl 399 1983, 19-31.
  • Shera, C. A., & Guinan, J. J., Jr. (2003). Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning: Journal of the Acoustical Society of America Vol 113(5) May 2003, 2762-2772.
  • Shera, C. A., & Zweig, G. (1992). Analyzing reverse middle-ear transmission: Noninvasive Gedankenexperiments: Journal of the Acoustical Society of America Vol 92(3) Sep 1992, 1371-1381.
  • Shnerson, A., Devigne, C., & Pujol, R. (1981). Age-related changes in the C57BL/6J mouse cochlea: II. Ultrastructural findings: Developmental Brain Research Vol 2(1) Aug 1981, 77-88.
  • Shnerson, A., Lenoir, M., Van de Water, T. R., & Pujol, R. (1983). The pattern of sensorineural degeneration in the cochlea of the deaf shaker-1 mouse: Ultrastructural observations: Developmental Brain Research Vol 9(3) Sep 1983, 305-315.
  • Shnerson, A., & Pujol, R. (1981). Age-related changes in the C57BL/6J mouse cochlea: I. Physiological findings: Developmental Brain Research Vol 2(1) Aug 1981, 65-75.
  • Smith, D. W. (1986). Effects of selective outer hair cell lesions on the frequency selectivity of the patas monkey auditory system: Dissertation Abstracts International.
  • Smith, D. W., & Finley, C. C. (1997). Effects of electrode configuration on psychophysical strength-duration functions for single biphasic electrical stimuli in cats: Journal of the Acoustical Society of America Vol 102(4) Oct 1997, 2228-2237.
  • Smith, D. W., Turner, D. A., & Henson, M. M. (2000). Psychophysical correlates of contralateral efferent suppression: I. The role of the medial olivocochlear system in "central masking" in nonhuman primates: Journal of the Acoustical Society of America Vol 107(2) Feb 2000, 933-941.
  • Smith, D. W., Watt, S., Konrad, K. E. M., & Olszyk, V. B. (1995). Behavioral auditory thresholds for sinusoidal electrical stimuli in the cat: Journal of the Acoustical Society of America Vol 98(1) Jul 1995, 211-220.
  • Smith, K. R. (1947). The problem of stimulation deafness. II. Histological changes in the cochlea as a function of tonal frequency: Journal of Experimental Psychology Vol 37(4) Aug 1947, 304-317.
  • Smith, K. R., & Wever, E. G. (1949). The problem of stimulation deafness. III. The functional and histological effects of a high-frequency stimulus: Journal of Experimental Psychology Vol 39(2) Apr 1949, 238-241.
  • Smith, R. L. (1985). Cochlear processes reflected in responses of the cochlear nerve: Acta Oto-Laryngologica Vol 100(1-2) Jul-Aug 1985, 1-12.
  • Smoak, H. A. (1985). Behavioral effects of cochlear nucleus lesions on sound localization in the tree shrew (Tupaia glis): Dissertation Abstracts International.
  • Sobkowicz, H. M., August, B. K., & Slapnick, S. M. (2002). Influence of neurotrophins on the synaptogenesis of inner hair cells in the deaf Bronx walter (bv) mouse organ of Corti in culture: International Journal of Developmental Neuroscience Vol 20(7) Nov 2002, 537-554.
  • Sohmer, H., Feinmesser, M., & Szabo, G. (1974). Sources of electrocochleographic responses as studied in patients with brain damage: Electroencephalography & Clinical Neurophysiology Vol 37(6) Dec 1974, 663-669.
  • Sorensen, A. D. (1906). Zur Frage der phylogenetischen, vikariierenden Ausbildung der Sinnesorgane: Psychological Bulletin Vol 3(7) Jul 1906, 228-229.
  • Spoendlin, H. (1975). Neuroanatomical basis of cochlear coding mechanisms: Audiology Vol 14(5-6) Nov-Dec 1975, 383-407.
  • Spoor, A. (1974). Apparatus for electrocochleography: Acta Oto-Laryngologica Suppl 316 1974, 25-36.
  • Steel, K. P., & Bock, G. R. (1980). The nature of inherited deafness in deafness mice: Nature Vol 288(5787) Nov 1980, 159-161.
  • Steel, K. P., & Bock, G. R. (1983). Cochlear dysfunction in the jerker mouse: Behavioral Neuroscience Vol 97(3) Jun 1983, 381-391.
  • Steele, C. R. (1974). Behavior of the basilar membrane with pure-tone excitation: Journal of the Acoustical Society of America Vol 55(1) Jan 1974, 148-162.
  • Stiber, B. Z., Lewis, E. R., Stiber, M., & Henry, K. R. (1999). Categorization of gerbil auditory fiber responses: Neurocomputing: An International Journal Vol 26-27 Jun 1999, 277-283.
  • Strassmaier, M., & Gillespie, P. G. (2003). Fast adaptation in the mammalian cochlea: A conserved mechanism for cochlear amplification: Nature Neuroscience Vol 6(8) Aug 2003, 790-791.
  • Stuart, A. (1998). Temporal resolution of cochlear output channels in normal and hearing-impaired listeners. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Sumner, C. J., Tucci, D. L., & Shore, S. E. (2005). Responses of Ventral Cochlear Nucleus Neurons to Contralateral Sound After Conductive Hearing Loss: Journal of Neurophysiology Vol 94(6) Dec 2005, 4234-4243.
  • Sun, W., Chen, L., & Salvi, R. J. (2002). Acoustic modulation of electrically evoked otoacoustic emission in chickens: Audiology & Neurotology Vol 7(4) Jul-Aug 2002, 206-213.
  • Suzuki, N., Asamura, K., Kikuchi, Y., Takumi, Y., Abe, S., Imamura, Y., et al. (2005). Type IX collagen knock-out mouse shows progressive hearing loss: Neuroscience Research Vol 51(3) Mar 2005, 293-298.
  • Svirsky, M. A. (1989). Psychophysical experiments and speech processing strategies for multichannel cochlear implant users: Dissertation Abstracts International.
  • Takeno, S., Wake, M., Mount, R. J., & Harrison, R. V. (1998). Degeneration of spiral ganglion cells in the chinchilla after inner hair cell loss induced by carboplatin: Audiology & Neurotology Vol 3(5) Sep-Oct 1998, 281-290.
  • Tartter, V. C., Chute, P. M., & Hellman, S. A. (1989). The speech of a postlingually deafened teenager during the first year of use of a multichannel cochlear implant: Journal of the Acoustical Society of America Vol 86(6) Dec 1989, 2113-2121.
  • Tavartkiladze, G. A., Frolenkov, G. I., & Kruglov, A. V. (1993). Delayed evoked otoacoustic emission and mechanisms for its generation: Sensory Systems Vol 7(4) Oct-Dec 1993, 241-249.
  • Teas, D. C. (1989). Auditory physiology: Present trends. Palo Alto, CA: Annual Reviews.
  • Tepper, J. M., & Schlesinger, K. (1980). Acoustic priming and kanamycin-induced cochlear damage: Brain Research Vol 187(1) Apr 1980, 81-95.
  • Terkildsen, K., Osterhammel, P., & Huis in't Veld, F. (1974). Far field electrocochleography, electrode positions: Scandinavian Audiology Vol 3(3) 1974, 123-129.
  • Terunuma, T., Kawauchi, S., Kajihara, M., Takahashi, S., & Hara, A. (2003). Effect of acoustic stress on glucocorticoid receptor mRNA in the cochlea of the guinea pig: Molecular Brain Research Vol 120(1) Dec 2003, 65-72.
  • Thai-Van, H., Gabriel, D., & Collet, L. (2005). Arguments in Favor of Auditory Reorganization in Human Subjects with Cochlear Damage. New York, NY: Springer Publishing Co.
  • Thai-Van, H., Mickey, C., Gabriel, D., Norena, A., & Collet, L. (2004). Local improvement in auditory frequency discrimination: A perceptual correlate of cortical reorganization in cochlear-damaged subjects: Revue de Neuropsychologie Vol 14(1-2) Mar-Jun 2004, 5-23.
  • Todt, D., & Hultsch, H. (1982). Impairment of vocal signal exchange in the monogamous duet-singer Cossypha heuglini (Turdidae): Effects on pairbond maintenance: Zeitschrift fur Tierpsychologie Vol 60(4) Dec 1982, 265-274.
  • Tong, Y. C., Busby, P. A., & Clark, G. M. (1988). Perceptual studies on cochlear implant patients with early onset of profound hearing impairment prior to normal development of auditory, speech, and language skills: Journal of the Acoustical Society of America Vol 84(3) Sep 1988, 951-962.
  • Tong, Y. C., Dowell, R. C., Blamey, P. J., & Clark, G. M. (1983). Two-component hearing sensations produced by two-electrode stimulation in the cochlea of a deaf patient: Science Vol 219(4587) Feb 1983, 993-994.
  • Toole, F. E., & Sayers, B. M. (1965). Inferences of neural activity associated with binaural acoustic images: Journal of the Acoustical Society of America 38(5) 1965, 769-779.
  • Torre, P., III, Cruickshanks, K. J., Klein, B. E. K., Klein, R., & Nondahl, D. M. (2005). The Association Between Cardiovascular Disease and Cochlear Function in Older Adults: Journal of Speech, Language, and Hearing Research Vol 48(2) Apr 2005, 473-481.
  • Trigueiros-Cunha, N., Leao, P., Renard, N., Tavares, M. A., & Eybalin, M. (2006). Prenatal cocaine exposure accelerates morphological changes and transient expression of tyrosine hydroxylase in the cochlea of developing rats: Brain Research Vol 1086(1) May 2006, 55-64.
  • Trigueiros-Cunha, N., Renard, N., Humbert, G., Tavares, M. A., & Eybalin, M. (2003). Catecholamine-independent transient expression of tyrosine hydroxylase in primary auditory neurons is coincident with the onset of hearing in the rat cochlea: European Journal of Neuroscience Vol 18(9) Nov 2003, 2653-2662.
  • Tsou, L. D., Wang, Z. Z., Guo, S. J., & Hu, K. (1984). Cochlear implant: Our preliminary experience: Acta Oto-Laryngologica Suppl 411 1984, 257-262.
  • Turner, C. W., & Doherty, K. A. (1997). Temporal masking and the "active process" in normal and hearing-impaired listeners. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Turner, R. G., Muraski, A. A., & Nielsen, D. W. (1981). Cilium length: Influence on neural tonotopic organization: Science Vol 213(4515) Sep 1981, 1519-1521.
  • Tye-Murray, N. (1992). Young cochlear implant users' response to delayed auditory feedback: Journal of the Acoustical Society of America Vol 91(6) Jun 1992, 3483-3486.
  • Tye-Murray, N., & Kelsay, D. M. (1993). A communication training program for parents of cochlear implant users: Volta Review Vol 95(1) Win 1993, 21-31.
  • Tyler, R. S., & et al. (1984). Initial Iowa results with the multichannel cochlear implant from Melbourne: Journal of Speech & Hearing Research Vol 27(4) Dec 1984, 596-604.
  • Tyler, R. S., Fernandes, M. A., & Wood, E. J. (1982). Masking of pure tones by broad-band noise in cochlear-impaired listeners: Journal of Speech & Hearing Research Vol 25(1) Mar 1982, 117-124.
  • Tyler, R. S., Moore, B. C., & Kuk, F. K. (1989). Performance of some of the better cochlear-implant patients: Journal of Speech & Hearing Research Vol 32(4) Dec 1989, 887-911.
  • Tyler, R. S., Opie, J. M., Fryauf-Bertschy, H., & Gantz, B. J. (1992). Future directions for cochlear implants: Journal of Speech-Language Pathology and Audiology Vol 16(2) Jun 1992, 151-164.
  • Tyler, R. S., Tye-Murray, N., Moore, B. C., & McCabe, B. F. (1989). Synthetic two-formant vowel perception by some of the better cochlear-implant patients: Audiology Vol 28(6) Nov-Dec 1989, 301-315.
  • Uziel, A., Romand, R., & Marot, M. (1981). Development of cochlear potentials in rats: Audiology Vol 20(2) Mar-Apr 1981, 89-100.
  • Valentin, N., & Bech, B. (1996). Ketamine anaesthesia for electrocochleography in children: Are psychic side effects really rare? : Scandinavian Audiology Vol 25(1) 1996, 39-43.
  • van der Heijden, M., & Joris, P. X. (2003). Cochlear Phase and Amplitude Retrieved from the Auditory Nerve at Arbitrary Frequencies: Journal of Neuroscience Vol 23(27) Oct 2003, 9194-9198.
  • van der Heijden, M., & Joris, P. X. (2006). Panoramic measurements of the apex of the cochlea: Journal of Neuroscience Vol 26(44) Nov 2006, 11462-11473.
  • Van Olphen, A. F., Rodenburg, M., & Verwey, C. (1979). Influence of the stimulus repetition rate on brain-stem-evoked responses in man: Audiology Vol 18(5) Sep-Oct 1979, 388-394.
  • Velluti, R., & Pedemonte, M. (1986). Differential effects of benzodiazepines on cochlear and auditory nerve responses: Electroencephalography & Clinical Neurophysiology Vol 64(6) Dec 1986, 556-562.
  • Verweij, C., & Rodenburg, M. (1977). Electro-cochlear potentials elicited by sinusoidally modulated signals: Audiology Vol 16(3) 1977, 241-251.
  • Vestergaard, M. D. (2003). Dead regions of the cochlea: Implications for speech recognition and applicability of articulation index theory: International Journal of Audiology Vol 42(5) Jul 2003, 249-261.
  • Veuillet, E., Collet, L., & Duclaux, R. (1991). Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: Dependence on stimulus variables: Journal of Neurophysiology Vol 65(3) Mar 1991, 724-735.
  • Veuillet, E., Magnan, A., Ecalle, J., Thai-Van, H., & Collet, L. (2007). Auditory processing disorder in children with reading disabilities: Effect of audiovisual training: Brain: A Journal of Neurology Vol 130(11) Nov 2007, 2915-2928.
  • Vicente-Torres, M. A., Munoz, E., Davila, D., & Gil-Loyzaga, P. (2001). Changes in the cochlear dopaminergic system of the aged rat: Brain Research Vol 917(1) Oct 2001, 112-117.
  • Viete, S., Pena, J. L., & Konishi, M. (1997). Effects of interaural intensity difference on the processing of interaural time difference in the owl's nucleus laminaris: Journal of Neuroscience Vol 17(5) Mar 1997, 1815-1824.
  • Vlajkovic, S. M., Vinayagamoorthy, A., Thorne, P. R., Robson, S. C., Wang, C. J. H., & Housley, G. D. (2006). Noise-induced up-regulation of NTPDase3 expression in the rat cochlea: Implications for auditory transmission and cochlear protection: Brain Research Vol 1104(1) Aug 2006, 55-63.
  • Vollmer, M., Beitel, R. E., & Snyder, R. L. (2001). Auditory detection and discrimination in deaf cats: Psychophysical and neural thresholds for intracochlear electrical signals: Journal of Neurophysiology Vol 86(5) Nov 2001, 2330-2343.
  • Voots, R. J., Reger, S. N., & Watson, J. E. (1964). Use of the Bekesy audiometer technique in animal research: Journal of Auditory Research 4(1) 1964, 55-62.
  • Walloch, R. A., Brummett, R. E., & Himes, D. (1976). Acoustic trauma in two highly inbred strains of guinea pigs: Journal of Auditory Research Vol 16(2) Apr 1976, 89-97.
  • Walloch, R. A., & Taylor-Spikes, M. (1977). Auditory thresholds and cochlear microphonics from the same guinea pigs: Journal of Auditory Research Vol 17(3) Jul 1977, 145-154.
  • Walsted, A. (2001). Unpredictable hearing loss after intratympanic gentamicin treatment for vertigo: A new theory: Acta Oto-Laryngologica Vol 121(1) Jan 2001, 42-44.
  • Wang, J., Faulconbridge, R. V. L., Fetoni, A., Guitton, M. J., Pujol, R., & Puel, J. L. (2003). Local application of sodium thiosulfate prevents cisplatin-induced hearing loss in the guinea pig: Neuropharmacology Vol 45(3) Sep 2003, 380-393.
  • Wang, J., van De Water, T. R., Bonny, C., de Ribaupierre, F., Puel, J. L., & Zine, A. (2003). A Peptide Inhibitor of c-Jun N-Terminal Kinase Protects against Both Aminoglycoside and Acoustic Trauma-Induced Auditory Hair Cell Death and Hearing Loss: Journal of Neuroscience Vol 23(24) Sep 2003, 8596-8607.
  • Wangemann, P. (2002). K-super(+) cycling and its regulation in the cochlea and the vestibular labyrinth: Audiology & Neurotology Vol 7(4) Jul-Aug 2002, 199-205.
  • Warfield, D., Ruben, R. J., & Glackin, R. (1966). Word discrimination in cats: Journal of Auditory Research 6(1) 1966, 97-119.
  • Waring, M. D. (1995). Auditory brain-stem responses evoked by electrical stimulation of the cochlear nucleus in human subjects: Electroencephalography & Clinical Neurophysiology: Evoked Potentials Vol 96(4) Jul 1995, 338-347.
  • Warren, R. M., & Bashford, J. A. (1981). Perception of acoustic iterance: Pitch and infrapitch: Perception & Psychophysics Vol 29(4) Apr 1981, 395-402.
  • Wasserman, G. S. (1981). Cochlear implant codes and speech perception in the profoundly deaf: Bulletin of the Psychonomic Society Vol 18(3) Sep 1981, 161-164.
  • Watanabe, A., Kimura, T., & Sakaguchi, H. (2002). Expression of protein kinase C in song control nuclei of deafened adult male Bengalese finches: Neuroreport: For Rapid Communication of Neuroscience Research Vol 13(1) Jan 2002, 127-132.
  • Watson, D. R. (1999). A study of the effects of cochlear loss on the auditory brainstem response (ABR) specificity and false positive rate in retrocochlear assessment: Audiology Vol 38(3) May-Jun 1999, 155-164.
  • Weber, J. L., Chouard, C. H., & Alcaras, N. (1984). Description of the French 12 channel cochlear implant: Acta Oto-Laryngologica Suppl 411 1984, 140-143.
  • Webster, W. R., Dunlop, C. W., Simons, L. A., & Aitkin, L. M. (1965). Auditory habituation: A test of a centrifugal and a peripheral theory: Science 148(Whole No 3670) 1965, 654-656.
  • Weiss, B. A., & Strother, W. A. (1976). The effect of general anesthesia on cochlear potentials: Journal of Auditory Research Vol 16(1) Jan 1976, 42-50.
  • West, C. D. (1970). The convolutional organization of the lateral superior olivary nucleus: Journal of Auditory Research Vol 10(3) Jul 1970, 205-209.
  • West, C. D. (1973). Transneuronal cell atrophy in the congenitally deaf white cat: Dissertation Abstracts International Vol.
  • Wever, E. G. (1939). The electrical responses of the ear: Psychological Bulletin Vol 36(3) Mar 1939, 143-187.
  • Wever, E. G. (1965). Structure and function of the lizard ear: Journal of Auditory Research 5(4) 1965, 331-371.
  • Wever, E. G. (1971). The lizard ear: Anguidae: Journal of Auditory Research Vol 11(2) Apr 1971, 160-172.
  • Wever, E. G., & Bray, C. W. (1936). The nature of acoustic response: the relation between sound intensity and the magnitude of responses in the cochlea: Journal of Experimental Psychology Vol 19(2) Apr 1936, 129-143.
  • Wever, E. G., & Bray, C. W. (1942). The stapedius muscle in relation to sound conduction: Journal of Experimental Psychology Vol 31(1) Jul 1942, 35-43.
  • Wever, E. G., Bray, C. W., & Lawrence, M. (1940). The origin of combination tones: Journal of Experimental Psychology Vol 27(3) Sep 1940, 217-226.
  • Wever, E. G., Bray, C. W., & Lawrence, M. (1940). A quantitative study of combination tones: Journal of Experimental Psychology Vol 27(5) Nov 1940, 469-496.
  • Wever, E. G., Bray, C. W., & Lawrence, M. (1942). The effects of pressure in the middle ear: Journal of Experimental Psychology Vol 30(1) Jan 1942, 40-52.
  • Wever, E. G., Bray, C. W., & Willey, C. F. (1937). The response of the cochlea to tones of low frequency: Journal of Experimental Psychology Vol 20(4) Apr 1937, 336-349.
  • Wever, E. G., & Lawrence, M. (1941). Tonal interference in relation to cochlear injury: Journal of Experimental Psychology Vol 29(4) Oct 1941, 283-295.
  • Wever, E. G., & Smith, K. R. (1944). The problem of stimulation deafness. I. Cochlear impairment as a function of tonal frequency: Journal of Experimental Psychology Vol 34(3) Jun 1944, 239-245.
  • White, D. R., Boettcher, F. A., Miles, L. R., & Gratton, M. A. (1998). Effectiveness of intermittent and continuous acoustic stimulation in preventing noise-induced hearing and hair cell loss: Journal of the Acoustical Society of America Vol 103(3) Mar 1998, 1566-1572.
  • White, M. W. (1983). Formant frequency discrimination and recognition in subjects implanted with intracochlear stimulating electrodes: Annals of the New York Academy of Sciences Vol 405 Jun 1983, 348-359.
  • Whitfield, I. C., & Ross, H. F. (1965). Cochlear-microphonic and summating potentials and the outputs of individual hair-cell generators: Journal of the Acoustical Society of America 38(1) 1965, 126-131.
  • Wiley, T. L., & Lilly, D. J. (1980). Temporal characteristics of auditory adaptation: A case report: Journal of Speech & Hearing Disorders Vol 45(2) May 1980, 209-215.
  • Williams, A. J., Clark, G. M., & Stanley, G. V. (1976). Pitch discrimination in the cat through electrical stimulation of the terminal auditory nerve fibers: Physiological Psychology Vol 4(1) Mar 1976, 23-27.
  • Willott, J. F., & Bross, L. S. (1996). Morphological changes in the anteroventral cochlear nucleus that accompany sensorineural hearing loss in DBA/2J and C57BL/6J mice: Developmental Brain Research Vol 91(2) Feb 1996, 218-226.
  • Wilson, B. S., Finley, C. C., Lawson, D. T., Wolford, R. D., & et al. (1991). Better speech recognition with cochlear implants: Nature Vol 352(6332) Jul 1991, 236-238.
  • Wimmer, V. C., Horstmann, H., Groh, A., & Kuner, T. (2006). Donut-Like Topology of Synaptic Vesicles with a Central Cluster of Mitochondria Wrapped into Membrane Protrusions: A Novel Structure-Function Module of the Adult Calyx of Held: Journal of Neuroscience Vol 26(1) Jan 2006, 109-116.
  • Wing, K. G., Harris, J. D., Stover, A., & Brouillette, J. H. (1953). Effects of changes in arterial oxygen and carbon dioxide upon cochlear microphonics: Journal of Comparative and Physiological Psychology Vol 46(5) Oct 1953, 352-357.
  • Wolsk, D. (1965). Distortion processes in the cochlear-microphonic response under normal and abnormal physiological conditions: Journal of the Acoustical Society of America 37(4) 1965, 647-652.
  • Woody, C. D., Wang, X.-F., & Gruen, E. (1994). Response to acoustic stimuli increases in the ventral cochlear nucleus after stimulus pairing: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 5(4) Jan 1994, 513-515.
  • Woody, C. D., Wang, X.-f., Gruen, E., & Landeira-Fernandez, J. (1992). Unit activity to click CS changes in dorsal cochlear nucleus after conditioning: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 3(5) May 1992, 385-388.
  • Woolf, N. K., & Ryan, A. F. (1985). Ventral cochlear nucleus neural discharge characteristics in the absence of outer hair cells: Brain Research Vol 343(2) Sep 1985, 205-218.
  • Woolridge, D., Stefanelli, M., & Hoppe, B. (2006). Un cas de syndrome de Susac avec activite delta rythmique intermittente au niveau frontal: Canadian Journal of Neurological Sciences Vol 33(4) Nov 2006, 403-406.
  • Yamada, O., Kodera, K., Hink, R. F., & Suzuki, J.-I. (1979). Cochlear distribution of frequency-following response initiation: A high-pass masking noise study: Audiology Vol 18(5) Sep-Oct 1979, 381-387.
  • Yamada, O., Kodera, K., Hink, R. F., & Yamane, H. (1978). Cochlear initiation site of the frequency-following response: A study of patients with sensorineural hearing loss: Audiology Vol 17(6) 1978, 489-499.
  • Yasin, I., & Plack, C. J. (2003). The effects of a high-frequency suppressor on tuning curves and derived basilar-membrane response functions: Journal of the Acoustical Society of America Vol 114(1) Jul 2003, 322-332.
  • Yates, G. K. (1995). Cochlear structure and function. San Diego, CA: Academic Press.
  • Young, E. D. (1987). Organization of the cochlear nucleus for information processing. Dordrecht, Netherlands: Martinus Nijhoff Publishing.
  • Young, E. D. (1998). Cochlear nucleus. New York, NY: Oxford University Press.
  • Young, E. D., & Oertel, D. (2004). Cochlear Nucleus. New York, NY: Oxford University Press.
  • Zapala, D. A., Gould, H. J., & Mendel, M. I. (1992). Place specific influences on the Wave I to V interpeak latency of the auditory brain-stem response: Journal of the Acoustical Society of America Vol 92(6) Dec 1992, 3174-3184.
  • Zeng, F.-g., & Turner, C. W. (1991). Binaural loudness matches in unilaterally impaired listeners: The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology Vol 43A(3) Aug 1991, 565-583.
  • Zhang, F., Boettcher, F. A., & Sun, X.-M. (2007). Contralateral suppression of distortion product otoacoustic emissions: Effect of the primary frequency in Dpgrams: International Journal of Audiology Vol 46(4) Apr 2007, 187-195.
  • Zhang, W., & Dolan, D. F. (2006). Inferior colliculus stimulation causes similar efferent effects on ipsilateral and contralateral cochlear potentials in the guinea pig: Brain Research Vol 1081(1) Apr 2006, 138-149.
  • Zhao, F., & Stephens, D. (2006). Distortion product otoacoustic emissions in patients with King-Kopetzky syndrome: International Journal of Audiology Vol 45(1) Jan 2006, 34-39.
  • Zwicker, E., & Terhardt, E. (1974). Facts and models in hearing: Proceedings of the Symposium on Psychophysical Models and Physiological Facts in Hearing held at Tutzing, Oberbayern, Federal Republic of Germany, April 22-26, 1974. Oxford, England: Springer-Verlag.
  • Zwislocki, J. J. (1974). Cochlear waves: Interaction between theory and experiments: Journal of the Acoustical Society of America Vol 55(3) Mar 1974, 578-583.
  • Zwislocki, J. J. (1975). Phase opposition between inner and outer hair cells and auditory sound analysis: Audiology Vol 14(5-6) Nov-Dec 1975, 443-455.
  • Zwislocki, J. J. (2002). Auditory sound transmission: An autobiographical perspective. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.


External links[]


|}

This page uses Creative Commons Licensed content from Wikipedia (view authors).
Advertisement