# Cluster sampling

*34,146*pages on

this wiki

Assessment |
Biopsychology |
Comparative |
Cognitive |
Developmental |
Language |
Individual differences |
Personality |
Philosophy |
Social |

Methods |
Statistics |
Clinical |
Educational |
Industrial |
Professional items |
World psychology |

**Statistics:**
Scientific method ·
Research methods ·
Experimental design ·
Undergraduate statistics courses ·
Statistical tests ·
Game theory ·
Decision theory

**Cluster sampling** is a sampling technique used when "natural" groupings are evident in the population. The total population is divided into these groups (or clusters), and a sample of the groups is selected. Then the required information is collected from the elements within each selected group. This may be done for every element in these groups, or a subsample of elements may be selected within each of these groups.

Elements within a cluster should ideally be as homogeneous as possible. But there should be heterogeneity between clusters. Each cluster should be a small scale version of the total population. The clusters should be mutually exclusive and collectively exhaustive. A random sampling technique is then used on any relevant clusters to choose which clusters to include in the study. In single-stage cluster sampling, all the elements from each of the selected clusters are used. In two-stage cluster sampling, a random sampling technique is applied to the elements from each of the selected clusters.

The main difference between cluster sampling and stratified sampling is that in cluster sampling the cluster is treated as the sampling unit so analysis is done on a population of clusters (at least in the first stage). In stratified sampling, the analysis is done on elements within strata. In stratified sampling, a random sample is drawn from each of the strata, whereas in cluster sampling only the selected clusters are studied. The main objective of cluster sampling is to reduce costs by increasing sampling efficiency (This contrasts with stratified sampling where the main objective is to increase precision.).

One version of cluster sampling is **area sampling** or **geographical cluster sampling**. Clusters consist of geographical areas. A geographically dispersed population can be expensive to survey. Greater economy than simple random sampling can be achieved by treating several respondents within a local area as a cluster. It is usually necessary to increase the total sample size to achieve equivalent precision in the estimators, but the savings in cost may make that feasible.

In some situations, cluster analysis is only appropriate when the clusters are approximately the same size. This can be achieved by combining clusters. If this is not possible, **probability proportionate to size sampling** is used. In this method, the probability of selecting any cluster varies with the size of the cluster, giving larger cluster a greater probability of selection and smaller clusters a lower probability. However, if clusters are selected with probability proportionate to size, the same number of interviews should be carried out in each sampled cluster so that each unit sampled has the same probability of selection.

## See alsoEdit

This page uses Creative Commons Licensed content from Wikipedia (view authors). |