Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory

Probability density function
Chi distribution PDF
Cumulative distribution function
Chi distribution CDF
Parameters k>0\, (degrees of freedom)
Support x\in [0;\infty)
pdf \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}
cdf P(k/2,x^2/2)\,
Mean \mu=\sqrt{2}\,\frac{\Gamma((k+1)/2)}{\Gamma(k/2)}
Mode \sqrt{k-1}\, for k\ge 1
Variance \sigma^2=k-\mu^2\,
Skewness \gamma_1=\frac{\mu}{\sigma^3}\,(1-2\sigma^2)
Kurtosis \frac{2}{\sigma^2}(1-\mu\sigma\gamma_1-\sigma^2)
Entropy \ln(\Gamma(k/2))+\,
mgf Complicated (see text)
Char. func. Complicated (see text)

In probability theory and statistics, the chi distribution is a continuous probability distribution. The distribution usually arises when a k-dimensional vector's orthogonal components are independent and each follow a standard normal distribution. The length of the vector will then have a chi distribution. The most familiar example is the Maxwell distribution of (normalized) molecular speeds which is a chi distribution with 3 degrees of freedom. If X_i are k independent, normally distributed random variables with means \mu_i and standard deviations \sigma_i, then the statistic

Z = \sqrt{\sum_1^k \left(\frac{X_i-\mu_i}{\sigma_i}\right)^2}

is distributed according to the chi distribution. The chi distribution has one parameter: k which specifies the number of degrees of freedom (i.e. the number of X_i).

Properties Edit

The probability density function is

f(x;k) = \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}

where \Gamma(z) is the Gamma function. The cumulative distribution function is given by:


where P(k,x) is the regularized Gamma function. The moment generating function is given by:


where M(a,b,z) is Kummer's confluent hypergeometric function. The raw moments are then given by:


where \Gamma(z) is the Gamma function. The first few raw moments are:


where the rightmost expressions are derived using the recurrence relationship for the Gamma function:


From these expressions we may derive the following relationships:

Mean: \mu=\sqrt{2}\,\,\frac{\Gamma((k+1)/2)}{\Gamma(k/2)}

Variance: \sigma^2=k-\mu^2\,

Skewness: \gamma_1=\frac{\mu}{\sigma^3}\,(1-2\sigma^2)

Kurtosis excess: \gamma_2=\frac{2}{\sigma^2}(1-\mu\sigma\gamma_1-\sigma^2)

The characteristic function is given by:


where again, M(a,b,z) is Kummer's confluent hypergeometric function. The entropy is given by:


where \psi_0(z) is the polygamma function.

Related distributionsEdit

Various chi and chi-square distributions
Name Statistic
chi-square distribution \sum_1^k \left(\frac{X_i-\mu_i}{\sigma_i}\right)^2
noncentral chi-square distribution \sum_1^k \left(\frac{X_i}{\sigma_i}\right)^2
chi distribution \sqrt{\sum_1^k \left(\frac{X_i-\mu_i}{\sigma_i}\right)^2}
noncentral chi distribution \sqrt{\sum_1^k \left(\frac{X_i}{\sigma_i}\right)^2}
This page uses Creative Commons Licensed content from Wikipedia (view authors).

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.