Psychology Wiki

Changes: Brain fitness


Back to page

(See also)
(See also)
(2 intermediate revisions by one user not shown)
Line 36: Line 36:
==See also==
==See also==
* [[Neurobics]]
* [[Neuroplasticity]]
* [[Neuroplasticity]]
* [[Neurocognitive]]
* [[Neurocognitive]]
Line 44: Line 45:
{{DEFAULTSORT:Brain Fitness}}
{{DEFAULTSORT:Brain Fitness}}
[[Category:Cognitive neuroscience]]
<span style="line-height:20px;"> </span><!--
Line 65: Line 63:
--><span style="line-height:20px;"> </span>{{enWP|Brain fitness}}
[[Category:Cognitive neuroscience]]
{{enWP|Brain fitness}}

Latest revision as of 22:33, July 12, 2013

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Cognitive Psychology: Attention · Decision making · Learning · Judgement · Memory · Motivation · Perception · Reasoning · Thinking  - Cognitive processes Cognition - Outline Index

The term brain fitness reflects a hypothesis that cognitive abilities can be maintained or improved by exercising the brain, in analogy to the way physical fitness is improved by exercising the body. Although there is strong evidence that aspects of brain structure remain plastic throughout life, and that high levels of mental activity are associated with reduced risks of age-related dementia, scientific support for the concept of "brain fitness" is limited. The term is virtually never used in the scientific literature, but is commonly used in the context of self-help books and commercial products.[1] It first came into play in the 1980s, and appeared in the titles of self-help books in 1989[2] and 1990.[3]


Brain fitness is the capacity of a person to meet the various cognitive demands of life. It is evident in an ability to assimilate information, comprehend relationships, and develop reasonable conclusions and plans. Brain fitness can be developed by formal education, being actively mentally engaged in life, continuing to learn, and exercises designed to challenge cognitive skills.[4][5] Healthy lifestyle habits including mental stimulation, physical exercise, good nutrition, stress management, and sleep can improve brain fitness.[6][7][8][9][10] On the other hand, chronic stress, anxiety, depression, aging, decreasing estrogen, excess oxytocin, and prolonged cortisol can decrease brain fitness as well as general health.[11][12][13][14][15][16]

Brain fitness can be measured physically at the cellular level by neurogenesis, the creation of new neurons, and increased functional connections of synapses and dendrites between neurons. It can also be evaluated by behavioral performance as seen in cognitive reserve, improved memory, attention, concentration, executive functions, decision-making, mental flexibility, and other core capabilities.

Like physical fitness, brain fitness can be improved by various challenging activities such as playing chess or bridge, dancing regularly, practicing yoga and tai chi and also by engaging in more structured computer based workouts.[17] Some research shows that brain stimulation can help prevent age-related cognitive decline, reverse behavioral assessment declines in dementia and Alzheimer’s[18][19][20] and can also improve normally functioning minds.[21] In experiments, comparing some computer based brain boosting exercises to other computer based activities, brain exercises were found to improve attention and memory in people over age 60.[22][23] Other studies have evaluated other brain boosting exercises and not found improvements. A study of 67 schoolchildren aged 10 compared 7 week Nintendo brain training to engaging in pen and paper puzzles. The study found that the brain training group suffered a 17 per cent decrease in memory tests after the seven week course, while the pen and paper group saw an increase of 33 per cent.[24] Some experts are skeptical with regard to the real value of particular commercial brain boosting products. For example, a panel of experts gathered by Which? Magazine have concluded that ‘Dr Kawashima’s Brain Training’ for the Nintendo DS will not enhance brainpower at all.[25] However, other researchers underline the growing amount of studies indicating that some commercial brain training products have shown measurable results in improving various cognitive skills.[26][27][28]


Main article: neurogenesis

Neurogenesis is the creation of new neurons. The more active a particular brain cell is, the more connections it develops with its neighboring neurons through a process called dendritic sprouting. A single neuron can have up to thirty thousand such connections, creating a dense web of interconnected activity throughout the brain. Each neuron can then be stimulated directly through experience (real or imagined) or indirectly through these connections from its neighbors, which saves the cell from cell death.

Physical exercise boosts the brain’s rate of neurogenesis throughout life, while mental exercise increases the rate at which those new brain cells survive and make functional connections into existing neural networks.[29][30] Both physical exercise and the challenge from mental exercise increase the secretion of nerve growth factor, which helps neurons grow and stay healthy.[31]

Mental stimulationEdit

Consistent mental challenge by novel stimuli increases production and interconnectivity of neurons and nerve growth factor, as well as prevents loss of connections and cell death. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) nationwide (America) clinical trial is so far the nation's largest study of cognitive training. Researchers found that improvements in cognitive ability roughly counteract the degree of long-term cognitive decline typical among older people without dementia. The results, published in the Journal of the American Medical Association in 2002, showed significant percentages of the 2,802 participants age 65 and older who trained for five weeks for about 2½ hours per week improved their memory, reasoning and information-processing speed.[32]

Joe Verghese, M.D. found that people with higher activity score had lower risks of Alzheimer's and dementia. An open question in the field is whether people who will later develop Alzheimer's are naturally less active, or whether intervening to raise an activity score will delay or prevent Alzheimer's.[8] If the latter hypothesis were true, people could lower their dementia risk by 7% simply by adding one activity per week (such as doing a crossword puzzle or playing a board game) to their schedule. According to the findings of that same study, subjects who did crossword puzzles four days a week had a 47% lower risk of dementia than subjects who did a crossword puzzle just once a week.

Activities presumed to promote brain fitnessEdit

Not all brain activity exercises the brain in the same way.

  • Activities that require you to use all your senses, break your routines and engage in novel experiences which can create BDNFs(neurotrophins) as explained in the book Keep Your Brain Alive, Workman Publishing.
  • Activities that involve ahead planning, like chess or crossword puzzle, stimulate the Frontal lobe area of the brain. [citation needed]
  • Activities like ballroom dance and basketball, train short range spatial skills, used when one walks through a short limited space, like the interior of a house. [citation needed]
  • Activities like learning a new language or painting require the coordinating of multiple regions of the brain. [citation needed]
  • Physical exercise promotes BDNF.[33]

Practical effectsEdit

A significant issue in brain fitness work has been establishing that brain training exercises have impacts on brain function that exist outside the context of the training task.[34] For example, in the ACTIVE studies, subjects were trained only in one of these three modalities: speed of processing, reasoning, or memory. Subjects did not significantly improve in non-trained modalities.[32]

Other studies, however, have looked at changes in tests of everyday function that occur after brain-based training. In a review of these studies, the following significant effects were noted. Improvements on speed of processing training tests were related to improvements in the Timed Instrumental Activities of Daily Living test (TIADL). Evidence of ceiling effects were also noted, indicating that subjects who were further below normal at the beginning of training had the largest expected gains. Further, the effect sizes may be related to customizing the training difficulty to the performance level of the trainee. Subjects trained with one training strategy, the Useful Field of View test (UFOV), showed significant improvements in an on-the-road driving test designed to evaluate driver response during potential dangerous situations. Specifically, subjects trained with UFOV made fewer dangerous maneuvers after training.[35] In another study, the researchers have found that action video game experience is shown to improve trainees’ probabilistic inference. These results were established both in visual and auditory tasks, indicating generalization across modalities.[36]

See alsoEdit


  1. includeonly>Sandra Aamodt, Sam Wang. "Exercise on the brain", New York Times, November 8, 2007.
  2. Vernon Mark, Jeffrey P. Mark (1989). Brain Power: A Neurosurgeon's Complete Program to Maintain and Enhance Brain Fitness Throughout Your Life, Houghton Mifflin.
  3. M. Le Poncin-Lafitte, Monique Le Poncin, Michael Levine (1990). Brain Fitness, Fawcett Columbine.
  4. Gopher, D, Weil M, Bareket T (1994). Transfer of skill from a computer game trainer to flight. Human Factors 36: 1–19.
  5. Scarmeas, N, Y Stern (2003). Cognitive reserve and lifestyle. J Clin Exp Neuropsychol 25 (5): 625–33.
  6. Kramer, AF, Erickson KI, Colcombe SJ (2006). Exercise, cognition, and the aging brain. J Appl Physiol 101 (4): 1237–42.
  7. Stern, Y, B Gurland, TK Tatemichi, et al. (1994). Influence of education and occupation on the incidence of Alzheimer's disease. JAMA 271 (13): 1004–10.
  8. 8.0 8.1 Verghese, J, et al. (2003). Leisure activities and the risk of dementia in the elderly. The New England Journal of Medicine 348 (25): 2508–16.
  9. Willis, SL, SL Tennstedt, M Marsiske, et al. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA 296 (23): 2805–14.
  10. Wilson, RS, et al. (2002). Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 287 (6): 742–8.
  11. Hairston, IS, Little MT, Scanlon MD, Barekat MT, Palmer TD, Sapolsky RM, Heller HC (2005). Sleep restriction suppresses neurogenesis induced by hippocampus-dependent learning. J Neurophysiol 94 (6): 4224–33.
  12. Mirescu, Christian, Jennifer D. Peters, Liron Noiman, and Elizabeth Gould (2006). Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. PNAS 103 (50): 19170–19175.
  13. MacLennan, AH, Henderson VW, Paine BJ, et al. (2006). Hormone therapy, timing of initiation, and cognition in women aged older than 60 years: the REMEMBER pilot study. Menopause 13 (1): 28–36.
  14. de Oliveira, LF, Camboim C, Diehl F, Consiglio AR, Quillfeldt JA. (2007). Glucocorticoid-mediated effects of systemic oxytocin upon memory retrieval. Neurobiol Learn Mem 87 (1): 67–71.
  15. Oei, NY, Everaerd WT, Elzinga BM, van Well S, Bermond B (2006). Psychosocial stress impairs working memory at high loads: an association with cortisol levels and memory retrieval. Stress 9 (3): 133–41.
  16. Elder, GA, De Gasperi R, Gama Sosa MA (2006). Research update: neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med 73 (7): 931–40.
  17. Cassavaugh, N, Kramer, AF (2009). Transfer of computer-based cognitive training to simulated driving in older adults. Applied Ergonomics 40 (5): 943–952.
  18. de la Fuente-Fernandez, Ra?l (2006). Impact of neuroprotection on incidence of Alzheimer's disease. PLoS ONE 20 (1): e52.
  19. Spector, A, Thorgrimsen L, Woods B, Royan L, Davies S, Butterworth M, Orrell M (2003). Efficacy of an evidence-based cognitive stimulation therapy programme for people with dementia: randomised controlled trial. Br J Psychiatry 183 (3): 248–54.
  20. Belleville, S, Gilbert B, Fontaine F, Gagnon L, Menard E, Gauthier S (2006). Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dement Geriatr Cogn Disord 22 (5–6): 486–99.
  21. Whitbourne, S. (April 6, 2010). Building a better brain: Strengthening your mental muscle. Psychology Today. Sussex Publishers.
  22. "A cognitive training program based on principles of brain plasticity: results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study." J Am Geriatr Soc. 2009 Apr;57(4):594-603
  23. "Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study" PNAS USA. 2006 August 15;103(33):12523-8
  29. Ernst, C, Olson AK, Pinel JP, Lam RW, Christie BR (2006). Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis?. J Psychiatry Neurosci 31 (2): 84–92.
  30. Wolf, SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, Kempermann G (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biol Psychiatry 60 (12): 1314–23.
  31. Chaturvedi, RK, Shukla S, Seth K, Agrawal AK (2006). Nerve growth factor increases survival of dopaminergic graft, rescue nigral dopaminergic neurons and restores functional deficits in rat model of Parkinson's disease. Neurosci Lett 398 (1–2): 44–9.
  32. 32.0 32.1 Ball, K, Berch DB, Helmers KF, et al. (2002). Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA 288 (18): 2271–81.
  33. Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW (2000). Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101 (2): 305–12.
  34. NY Times Op-Ed Exercise on the Brain. Sandra Aamodt and Sam Wang. Nov 8 2007.
  35. The Impact of Speed of Processing Training on Cognitive and Everyday Functions.
    Author: Karlene Ball, Jerri D. Edwards, and Lesley A. Ross
    Journal: Journals of Gerontology: SERIES B 2007, Vol. 62B (Special Issue I): 19-31
  36. Green, Shawn, Pouge A, Bavelier D, (September 2010). Improved Probabilistic Inference as a General Learning Mechanism with Action Video Games. Current Biology 20 (17): 1573–1579.


This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki