Wikia

Psychology Wiki

Augmented reality

Talk0
34,139pages on
this wiki
Revision as of 07:36, October 27, 2012 by Dr Joe Kiff (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Cognitive Psychology: Attention · Decision making · Learning · Judgement · Memory · Motivation · Perception · Reasoning · Thinking  - Cognitive processes Cognition - Outline Index


This article needs rewriting to enhance its relevance to psychologists..
Please help to improve this page yourself if you can..


Augmented reality (AR) is a live, direct or indirect, view of a physical, real-world environment whose elements are augmented by computer-generated sensory input such as sound, video, graphics or GPS data. It is related to a more general concept called mediated reality, in which a view of reality is modified (possibly even diminished rather than augmented) by a computer. As a result, the technology functions by enhancing one’s current perception of reality.[1] By contrast, virtual reality replaces the real world with a simulated one.[2][3] Augmentation is conventionally in real-time and in semantic context with environmental elements, such as sports scores on TV during a match. With the help of advanced AR technology (e.g. adding computer vision and object recognition) the information about the surrounding real world of the user becomes interactive and digitally manipulable. Artificial information about the environment and its objects can be overlaid on the real world.[4][5][6][7]

Technology

Hardware

The main hardware components for augmented reality are: processor, display, sensors and input devices. Modern mobile computing devices like smartphones and tablet computers contain these elements which often include a camera and MEMS sensors such as accelerometer, GPS, and solid state compass, making them suitable AR platforms.[8]

Display

Various technologies are used in Augmented Reality rendering including optical projection systems, monitors, hand held devices, and display systems worn on one's person such as head mounted displays.

Head-mounted

A head-mounted display (HMD) is a display device paired to a headset such as a harness or helmet. HMDs place images of both the physical world and virtual objects over the user's field of view. Modern HMDs often employ sensors for six degrees of freedom monitoring that allow the system to align virtual information to the physical world.[9][10] The main advantage of HMD AR is the user's immersive experience. The graphical information is coupled to the view of the user and adjusts accordingly with their head movements.[11][12]

Eye Glasses

AR displays can be rendered on devices resembling eyeglasses. Versions include eye wear that employs cameras to intercept the real world view and re-display it's augmented view through the eye pieces[13] and devices in which the AR imagery is projected through or reflected off the surfaces of the eye wear lens pieces.[14][15][16]

Contact Lenses

Contact lenses that display AR imaging are in development. These lenses contain the elements for display embedded into the lens including integrated circuitry, LEDs and an antenna for wireless communication.[17][18] Another version of contact lenses, in development for the U.S. Military, is designed to function with AR spectacles, allowing soldiers to focus on close-to-the-eye AR images on the spectacles and distant real world objects at the same time.[19][20]

Virtual Retina Display

A virtual retinal display (VRD) is a personal display device under development at the University of Washington's Human Interface Technology Laboratory. With this technology, a display is scanned directly onto the retina of a viewer's eye. The viewer sees what appears to be a conventional display floating in space in front of them.[21]

Handheld

Handheld displays employ a small display that fits in a user's hand. All handheld AR solutions to date opt for video see-through. Initially handheld AR employed fiduciary markers,[22] and later GPS units and MEMS sensors such as digital compasses and six degrees of freedom accelerometergyroscope. Today SLAM markerless trackers such as PTAM are starting to come into use. Handheld display AR promises to be the first commercial success for AR technologies. The two main advantages of handheld AR is the portable nature of handheld devices and ubiquitous nature of camera phones. The disadvantages are the physical constraints of the user having to hold the handheld device out in front of them at all times as well as distorting effect of classically wide-angled mobile phone cameras when compared to the real world as viewed through the eye.[23]

Spatial

Spatial Augmented Reality (SAR) augments real world objects and scenes without the use of special displays such as monitors, head mounted displays or hand-held devices. SAR makes use of digital projectors to display graphical information onto physical objects. The key difference in SAR is that the display is separated from the users of the system. Because the displays are not associated with each user, SAR scales naturally up to groups of users, thus allowing for collocated collaboration between users. SAR has several advantages over traditional head-mounted displays and handheld devices. The user is not required to carry equipment or wear the display over their eyes. This makes spatial AR a good candidate for collaborative work, as the users can see each other’s faces. A system can be used by multiple people at the same time without each having to wear a head-mounted display.

Examples include shader lamps, mobile projectors, virtual tables, and smart projectors. Shader lamps mimic and augment reality by projecting imagery onto neutral objects, providing the opportunity to enhance the object’s appearance with materials of a simple unit- a projector, camera, and sensor. Handheld projectors further this goal by enabling cluster configurations of environment sensing, reducing the need for additional peripheral sensing.[24][25]

Other tangible applications include table and wall projections. One such innovation, the Extended Virtual Table, separates the virtual from the real by including beam-splitter mirrors attached to the ceiling at an adjustable angle.[26] Virtual showcases, which employ beam-splitter mirrors together with multiple graphics displays, provide an interactive means of simultaneously engaging with the virtual and the real.[27][28] Altogether, current augmented reality display technology can be applied to improve design and visualization, or function as scientific simulations and tools for education or entertainment. Many more implementations and configurations make spatial augmented reality display an increasingly attractive interactive alternative.[11]

Spatial AR does not suffer from the limited display resolution of current head-mounted displays and portable devices. A projector based display system can simply incorporate more projectors to expand the display area. Where portable devices have a small window into the world for drawing, a SAR system can display on any number of surfaces of an indoor setting at once. The drawbacks, however, are that SAR systems of projectors do not work so well in sunlight and also require a surface on which to project the computer-generated graphics. Augmentations cannot simply hang in the air as they do with handheld and HMD-based AR. The tangible nature of SAR, though, makes this an ideal technology to support design, as SAR supports both a graphical visualisation and passive haptic sensation for the end users. People are able to touch physical objects, and it is this process that provides the passive haptic sensation.[7][29][30][31]

Tracking

Modern mobile augmented reality systems use one or more of the following tracking technologies: digital cameras and/or other optical sensors, accelerometers, GPS, gyroscopes, solid state compasses, RFID and wireless sensors. These technologies offer varying levels of accuracy and precision. Most important is the position and orientation of the user's head. Tracking the user's hand(s) or a handheld input device can provide a 6DOF interaction technique.[32]

Input devices

Techniques include speech recognition systems that translate a user's spoken words into computer instructions and gesture recognition systems that can interpret a user's body movements by visual detection or from sensors embedded in a peripheral device such as a wand, stylus, pointer, glove or other body wear.[33][34][35][36]

Computer

The computer analyzes the sensed visual and other data to synthesize and position augmentations.

Software and algorithms

A key measure of AR systems is how realistically they integrate augmentations with the real world. The software must derive real world coordinates, independent from the camera, from camera images. That process is called image registration which uses different methods of computer vision, mostly related to video tracking.[37][38] Many computer vision methods of augmented reality are inherited from visual odometry. Usually those methods consist of two parts.

First detect interest points, or fiduciary markers, or optical flow in the camera images. First stage can use feature detection methods like corner detection, blob detection, edge detection or thresholding and/or other image processing methods. [39][40] The second stage restores a real world coordinate system from the data obtained in the first stage. Some methods assume objects with known geometry (or fiduciary markers) present in the scene. In some of those cases the scene 3D structure should be precalculated beforehand. If part of the scene is unknown simultaneous localization and mapping (SLAM) can map relative positions. If no information about scene geometry is available, structure from motion methods like bundle adjustment are used. Mathematical methods used in the second stage include projective (epipolar) geometry, geometric algebra, rotation representation with exponential map, kalman and particle filters, nonlinear optimization, robust statistics.

Applications

Augmented reality has many applications, and many areas can benefit from the usage of AR technology. AR was initially used for military, industrial, and medical applications, but was soon applied to commercial and entertainment areas as well.[41]

Archaeology

AR can be used to aid archaeological research, by augmenting archaeological features onto the modern landscape, enabling archaeologists to formulate conclusions about site placement and configuration [42]

Another application given to AR in this field is the possibility for users to rebuild ruins, buildings, or even landscapes as they formerly existed.[43]

Architecture

AR can aid in visualizing building projects. Computer generated images of a structure can be superimposed into a real life local view of a property before the physical building is constructed there. AR can also be employed within an architect's work space, rendering into their view animated 3D visualizations of their 2D drawings. Architecture sight-seeing can be enhanced with AR applications allowing users viewing a building's exterior to virtually see through its walls viewing it's interior objects and layout.[44][45]

Art

AR can help create art in real time integrating reality such as painting, drawing and modeling. AR art technology has helped disabled individuals to continue pursuing their passion.[46] Recently, Alaskan artist Nathan Shafer created a global warming-oriented AR project, called Exit Glacier AR Terminus. In this project, AR technology (is this case, smartphones) walks the viewer through various positions of South Central Alaska's Exit Glacier, going back three decades. Belgian photographer, Liesje Reyskens recently commissioned Augmented Reality Agency Kudanto produce an AR art installation at the Albus Lux gallery - the AR app recognized her photography and overlaid live animation video to enhance the gallery experience.[47]

An item such as a commemorative coin can be designed so that when scanned by an AR enabled device it displays additional objects and layers of information that were not visible in a real world view of it.[48][49]

Commerce

AR can enhance product previews such as allowing a customer to view what's inside a product's packaging without opening it.[50] AR can also be used as an aid in selecting products from a catalog or through a kiosk. Scanned images of products can activate views of additional content such as customization options and additional images of the product in its use.[51][52] AR is used to integrate print and video marketing. Printed marketing material can be designed with certain "trigger" images that, when scanned by an AR enabled device using image recognition, activate a video version of the promotional material.[53][54][55]

Education

Augmented reality applications can complement a standard curriculum. Text, graphics, video and audio can be superimposed into a student’s real time environment. Textbooks, flashcards and other educational reading material can contain embedded “markers” that, when scanned by an AR device, produce supplementary information to the student rendered in a multimedia format.[56][57][58] Students can participate interactively with computer generated simulations of historical events, exploring and learning details of each significant area of the event site.[59] Augmented reality technology also permits learning via remote collaboration, in which students and instructors not at the same physical location can share a common virtual learning environment populated by virtual objects and learning materials and interact with another within that setting.[60]

Industrial Design

In the area of industrial design AR can provide crucial help, AR can help designer experience the final product before is complete or can help with the testing part of it. Volkswagen is already using AR for comparing calculated and actual crash test imagery.[61] But AR can also be used to visualize and modify a car body curvature or the engine layout of it. AR can also be used to compare digital mock-ups with physical mock-ups for efficiently finding discrepancies between them.[62][63]

Medical

AR can provide the surgeon with information of the heartbeat, the blood pressure, the state of the patient’s organ, etc. It can also help the doctor identify the problem with the patient right away. This approach works in a similar as the technicians doing maintenance work. Examples include a virtual X-ray view based on prior tomography or on real time images from ultrasound and confocal microscopy probes[64] or open NMR devices. AR can enhance viewing a fetus inside a mother's womb.[65] See also Mixed reality.

Military

In combat, AR can serve as a networked communication system that renders useful battlefield data onto a soldier's goggles in real time. From the soldier's viewpoint, people and various objects can be marked with special indicators to warn of potential dangers. Virtual maps and 360° view camera imaging can also be rendered to aid a soldier's navigation and battlefield perspective, and this can be transmitted to military leaders at a remote command center.[66]

Navigation

AR can augment the effectiveness of navigation devices. Information can be displayed on the car's windshield indicating information of where the user is going. Not only can information of how to get to the place be offered but so can information about the weather or the terrain. AR can provide traffic information to drivers as well as alert the driver in case of an emergency or highlight objects on the road that might not be caught by the driver’s eyes at a first glance. It can also be used in the sea where fishermen can use the technology to display information about the amount of fish that are in the area and how to get to them.[67]

Currently some car manufacturers (e.g. BMW and GM) are using this technology in car windshields to display meter information and traffic information.[68]

Aboard naval and maritime vessels, AR can allow bridge watch-standers to continuously monitor important information such as a ship's heading and speed while moving throughout the bridge or performing other tasks.[69]

Office Workplace

AR can help facilitate collaboration among distributed team members in a work force via conferences with real and virtual participants. AR tasks can include brainstorming and discussion meetings utilizing common visualization via touch screen tables, interactive digital whiteboards, shared design spaces, and distributed control rooms.[70][71][72]

Sports & Entertainment

AR has become common in sports telecasting. Sports and entertainment venues are provided with see-trough and overlay augmentation through tracked camera feeds for enhanced viewing by the audience. Examples include the yellow "first down" line seen in television broadcasts of American football games showing the line the offensive team must cross to receive a first down. AR is also used in association with football and other sporting events to show commercial advertisements overlayed onto the view of the playing area. Sections of rugby fields and cricket pitches also display sponsored images. Swimming telecasts often add a line across the lanes to indicate the position of the current record holder as a race proceeds to allow viewers to compare the current race to the best performance. Other examples include hockey puck tracking and annotations of racing car performance and snooker ball trajectories. [37][73]

AR can enhance concert and theater performances. For example, artists can allow listeners to augment their listening experience by adding their performance to that of other bands/groups of users.[74][75][76]

The gaming industry has benefited a lot from the development of this technology. A number of games have been developed for prepared indoor environments. Early AR games also include AR air hockey, collaborative combat against virtual enemies, and an AR-enhanced pool games. A significant number of games incorporate AR in them and the introduction of the smartphone has made a bigger impact.[77][78][79]

Task support

Complex tasks such as assembly, maintenance, and surgery can be simplified by inserting additional information into the field of view. For example, labels can be displayed on parts of a system to clarify operating instructions for a mechanic who is performing maintenance on the system.[80][81] Assembly lines gain many benefits from the usage of AR. In addition to Boeing, BMW and Volkswagen are known for incorporating this technology in their assembly line to improve their manufacturing and assembly processes.[82][83][84]Big machines are difficult to maintain because of the multiple layers or structures they have. With the use of AR the workers can complete their job in a much easier way because AR permits them to look through the machine as if it was with x-ray, pointing them to the problem right away.[85]

Tourism and sightseeing

Augmented reality is used in applications for tourism, including highlighting information of important places and providing connections between the real world and historic events, such as rendering historical events into a view of a current landscape.[86] [87] [88] The use of AR in this area has enhanced the experience of users when they go traveling by providing information of the place they are at as well as comments made by other users that have been there before. AR in the tourism industry can connect with different platforms to provide a richer experience to the final user of the system.[89]

Translation

AR systems can interpret foreign text on signs and menus and, in a user's augmented view, re-display the text in the user's language. Spoken words of a foreign language can be translated and displayed in a user's view as printed subtitles.[90][91][92]

Notable researchers

  • Ivan Sutherland invented the first AR head-mounted display at Harvard University.
  • Steven Feiner, Professor at Columbia University, is a leading pioneer of augmented reality, and author of the first paper on an AR system prototype, KARMA (the Knowledge-based Augmented Reality Maintenance Assistant), along with Blair MacIntyre and Doree Seligmann.[93]
  • L.B. Rosenberg developed one of the first known AR systems, called Virtual Fixtures, while working at the U.S. Air Force Armstrong Labs in 1991, and published first study of how an AR system can enhance human performance.[94]
  • Dieter Schmalstieg and Daniel Wagner jump started the field of AR on mobile phones. They developed the first marker tracking systems for mobile phones and PDAs.[95]
  • Bruce H. Thomas and Wayne Piekarski develop the Tinmith system in 1998.[96] They along with Steve Feiner with his MARS system pioneer outdoor augmented reality.
  • Reinhold Behringer performed important early work in image registration for augmented reality, and prototype wearable testbeds for augmented reality. He also co-organized the First IEEE International Symposium on Augmented Reality in 1998 (IWAR'98), and co-edited one of the first books on augmented reality.[97][98][99]

History

  • 1901: L. Frank Baum, an author, first mentions the idea of an electronic display/spectacles that overlays data onto real life (in this case 'people'), it's named a 'character marker'.[100]
  • 1957–62: Morton Heilig, a cinematographer, creates and patents a simulator called Sensorama with visuals, sound, vibration, and smell.[101]
  • 1966: Ivan Sutherland invents the head-mounted display and positions it as a window into a virtual world.
  • 1975: Myron Krueger creates Videoplace to allow users to interact with virtual objects for the first time.
  • 1989: Jaron Lanier coins the phrase Virtual Reality and creates the first commercial business around virtual worlds.
  • 1992: L.B. Rosenberg develops one of the first functioning AR systems, called Virtual Fixtures, at the U.S. Air Force Research Laboratory—Armstrong, and demonstrates benefits to human performance.[94][102]
  • 1992: Steven Feiner, Blair MacIntyre and Doree Seligmann present the first major paper on an AR system prototype, KARMA, at the Graphics Interface conference.
  • 1993 A widely cited version of the paper above is published in Communications of the ACM - Special issue on computer augmented environments, edited by Pierre Wellner, Wendy Mackay, and Rich Gold.[103]
  • 1993: Loral WDL, with sponsorship from STRICOM, performed the first demonstration combining live AR-equipped vehicles and manned simulators. Unpublished paper, J. Barrilleaux, "Experiences and Observations in Applying Augmented Reality to Live Training", 1999.[104]
  • 1994: Julie Martin creates first 'Augmented Reality Theater production', Dancing In Cyberspace, funded by the Australia Council for the Arts, features dancers and acrobats manipulating body–sized virtual object in real time, projected into the same physical space and performance plane. The acrobats appeared immersed within the virtual object and environments. The installation used Silicon Graphics computers and Polhemus sensing system.
  • 1998: Spatial Augmented Reality introduced at University of North Carolina at Chapel Hill by Raskar, Welch, Fuchs.[29]
  • 1999: Hirokazu Kato (加藤 博一) created ARToolKit at HITLab, where AR later was further developed by other HITLab scientists, demonstrating it at SIGGRAPH.
  • 2000: Bruce H. Thomas develops ARQuake, the first outdoor mobile AR game, demonstrating it in the International Symposium on Wearable Computers.
  • 2008: Wikitude AR Travel Guide launches on 20 Oct 2008 with the G1 Android phone.[105]
  • 2009: ARToolkit was ported to Adobe Flash (FLARToolkit) by Saqoosha, bringing augmented reality to the web browser.[106]
  • 2009: project SixthSense from MIT showcased projection based wearable AR pendent device.[107]
  • 2011 : LASTER Technologies, a French start-up from University of Paris Sud (Orsay), has developed first augmented reality ski goggle in the market, demonstrating it at SIGGRAPH.[108]

See also

References

  1. Graham, M., Zook, M., and Boulton, A. "Augmented reality in urban places: contested content and the duplicity of code." Transactions of the Institute of British Geographers, DOI: 10.1111/j.1475-5661.2012.00539.x 2012
  2. Steuer, Jonathan. Defining Virtual Reality: Dimensions Determining Telepresence, Department of Communication, Stanford University. 15 October 1993
  3. Introducing Virtual Environments National Center for Supercomputing Applications, University of Illinois
  4. Chen, Brian X. If You’re Not Seeing Data, You’re Not Seeing, Wired, 25 August 2009
  5. Maxwell, Kerry. Augmented Reality, Macmillan Dictionary Buzzword
  6. Augmented reality-Everything about AR, Augmented Reality On
  7. 7.0 7.1 Azuma, Ronald. A Survey of Augmented Reality Presence: Teleoperators and Virtual Environments, pp. 355–385, August 1997.
  8. Metz, Rachel. Augmented Reality Is Finally Getting Real Technology Review, 2 August 2012
  9. Fleet Week: Office of Naval Research Technology - Virtual Reality Welder Training, eweek, 28 May 2012
  10. Rolland, Jannick; Baillott, Yohan; Goon, Alexei.A Survey of Tracking Technology for Virtual Envirinments, Center for Research and Education in Optics and Lasers, University of Central Florida
  11. 11.0 11.1 Klepper, Sebastian.Augmented Reality - Display Systems
  12. Pollicino, Joe. Sensics head-tracking 3D Smart goggles hands-on engadget10 January 2012
  13. Grifatini, Kristina. Augmented Reality Goggles, Technology Review 10 November 2010
  14. Arthur, Charles. UK company's 'augmented reality' glasses could be better than Google's, The Guardian, 10 September 2012
  15. Gannes, Liz. Google Unveils Project Glass: Wearable Augmented-Reality Glasses. URL accessed on 2012-04-04., All Things D.
  16. Benedetti, Winda. Xbox leak reveals Kinect 2, augmented reality glasses NBC News,
  17. Greenemeier, Larry. Computerized Contact Lenses Could Enable In-Eye Augmented Reality. Scientific American, 23 November 2011
  18. Yoneda, Yuka. Solar Powered Augmented Contact Lenses Cover Your Eye with 100s of LEDs. inhabitat, 17 March 2010
  19. Anthony, Sebastian. US military developing multi-focus augmented reality contact lenses. ExtremeTech, 13 April 2012
  20. Bernstein, Joseph. 2012 Invention Awards: Augmented-Reality Contact Lenses Popular Science, 5 June 2012
  21. Tidwell, Michael; Johnson, Richard S.; Melville, David; Furness, Thomas A.The Virtual Retinal Display - A Retinal Scanning Imaging System, Human Interface Technology Laboratory, University of Washington
  22. Marker vs Markerless AR, Dartmouth College Library
  23. Feiner, Steve Augmented reality: a long way off?. AR Week. Pocket-lint. URL accessed on 3 March 2011.
  24. Bimber, Oliver Spatial augmented reality : merging real and virtual worlds. AK Peters (2005).
  25. Milgram, Paul ; Takemura, Haruo; Utsumi, Akira; Kishino, Utsumi; Kishino, Kishin. Augmented Reality: A class of displays on the reality-virtuality continuum, Telemanipulator and Telepresence Technologies, SPIE 2351 p. 282-292
  26. Bimber, Oliver; Encarnação, Miguel; Branco, Pedro. The Extended Virtual Table: An Optical Extension for Table-Like Projection Systems, MIT Press Journal Vol. 10, No. 6, Pages 613-631, March 13, 2006
  27. Mahoney, Diana Phillips. [Showcasing Augmented Reality Computer Graphics World Vol: 24 Issue: 11 (November 2001)
  28. Bimber, O.; Fröhlich, B.; Schmalstieg, D.; Encarnacao, L.M. The virtual showcase IEEE Computer Graphics and Applications vol. 21 No.6, pp.48-55 (2001)
  29. 29.0 29.1 Ramesh Raskar, Greg Welch, Henry Fuchs Spatially Augmented Reality, First International Workshop on Augmented Reality, Sept 1998
  30. Knight, Will. Augmented reality brings maps to life 19 July 2005
  31. Sung, Dan. Augmented reality in action - maintenance and repair. Pocket-lint, 1 March 2011
  32. Stationary systems can employ 6DOF track systems such as Polhemus, ViCON, A.R.T, or Ascension.
  33. Marshall, Gary.Beyond the mouse: how input is evolving, Touch,voice and gesture recognition and augmented realitytechradar.computing\PC Plus 23 August 2009
  34. Simonite, Tom. Augmented Reality Meets Gesture Recognition, Technology Review, 15 September 2011
  35. Chaves, Thiago; Figueiredo, Lucas; Da Gama, Alana; de Araujo, Christiano; Teichrieb, Veronica. Human Body Motion and Gestures Recognition Based on Checkpoints. SVR '12 Proceedings of the 2012 14th Symposium on Virtual and Augmented Reality Pages 271-278
  36. Barrie, Peter; Komninos, Andreas; Mandrychenko, Oleksii.A Pervasive Gesture-Driven Augmented Reality Prototype using Wireless Sensor Body Area Networks
  37. 37.0 37.1 Azuma, Ronald; Balliot, Yohan; Behringer, Reinhold; Feiner, Steven; Julier, Simon; MacIntyre, Blair. Recent Advances in Augmented Reality Computers & Graphics, November 2001
  38. Maida, James; Bowen, Charles; Montpool, Andrew; Pace, John. Dynamic registration correction in augmented-reality systems, Space Life Sciences, NASA
  39. State, Andrei; Hirota, Gentaro; Chen,David T; Garrett, William; Livingston, Mark. Superior Augmented Reality Registration by Integrating Landmark Tracking and Magnetic Tracking, Department of Computer ScienceUniversity of North Carolina at Chapel Hill
  40. Bajura, Michael; Neumann, Ulrich. Dynamic Registration Correction in Augmented-Reality Systems University of North Carolina, University of Southern California
  41. Augmented Reality Landscape 11 August 2012
  42. Stuart Eve. Augmenting Phenomenology: Using Augmented Reality to Aid Archaeological Phenomenology in the Landscape.. URL accessed on 2012-09-25.
  43. Dähne, Patrick; Karigiannis, John N.. Archeoguide: System Architecture of a Mobile Outdoor Augmented Reality System. URL accessed on 2010-01-06.
  44. Divecha, Devina.Augmented Reality (AR) used in architecture and design. designMENA 8 September 2011
  45. Architectural dreams in augmented reality. University News, University of Western Australia. 5 March 2012
  46. Lieberman, Zachary. The Eyewriter. URL accessed on 2010-04-27.
  47. Wood, Tom. Kudan Augmented Art. URL accessed on 2012-08-01.
  48. Alexander, Michael.Arbua Shoco Owl Silver Coin with Augmented Reality, Coin Update July 20, 2012
  49. Royal Mint produces revolutionary commemorative coin for Aruba, Today August 7, 2012
  50. Humphries, Mathew.[1].Geek.com 19 September 2011
  51. Netburn, Deborah.Ikea introduces augmented reality app for 2013 catalog. Los Angeles Times, 23 July 2012
  52. Saenz, Aaron.Virtual Mirror Brings Augmented Reality to Makeup Counters. singularityHub, 15 June 2010
  53. Katts, Rima. Elizabeth Arden brings new fragrance to life with augmented reality Mobile Marketer, 19 September 2012
  54. Meyer, David. Telefónica bets on augmented reality with Aurasma tie-in gigaom, 17 September 2012
  55. Mardle, Pamela.Video becomes reality for Stuprint.com. Printweek, 3 October 2012
  56. Groundbreaking Augmented Reality-Based Reading Curriculum Launches, ‘’PRweb’’, 23 October 2011
  57. Stewart-Smith, Hanna. Education with Augmented Reality: AR textbooks released in Japan, ‘’ZDnet’’, 4 April 2012
  58. Augmented reality in education smarter learning
  59. Lebrecht, Anna. [http://digitalunion.osu.edu/2012/04/24/augmented-reality-for-education/ Augmented Reality for Education] ‘’Digital Union’’, The Ohio State University 24 April 2012
  60. Kaufmann, Hannes. Collaborative Augmented Reality in Education, Institute of Software Technology and Interactive Systems, Vienna University of Technology
  61. (2002). Stereo augmentation of simulation results on a projection wall. Mixed and Augmented Reality, 2002. ISMAR 2002. Proceedings.: 271-322.
  62. Augmented Prototyping as Design Means in Industrial Design Engineering.
  63. (November, 18 2004)Assembly Design and Evaluation in an Augmented Reality Environment.
  64. Mountney, Peter; Giannarou, Stamatia ; Elson, Daniel; Yang, Guang-Zhong. Optical Biopsy Mapping for Minimally Invasive Cancer Screening. Department of Computing, Imperial College 2009
  65. UNC Ultrasound/Medical Augmented Reality Research. URL accessed on 2010-01-06.
  66. Cameron, Chris. Military-Grade Augmented Reality Could Redefine Modern Warfare ReadWriteWeb June 11, 2010
  67. Tönnis, M, Sandor, C, Klinker, G, Lange, C and Bubb, H. Experimental evaluation of an augmented reality visualization for directing a car driver‟s attention. In ISMAR’05: Proc. 4th Int’l Symp. on Mixed and Augmented Reality, Vienna, Austria, 5–8 Oct. 2005. IEEE CS Press, pp. 56–59
  68. GM's Enhanced Vision System. Techcrunch.com (17 March 2010). Retrieved 9 June 2012.
  69. Cheney-Peters, Scott. CIMSEC: Google's AR Goggles. URL accessed on 2012-04-20.
  70. Stafford, Aaron; Piekarski, Wayne; Thomas, Bruce H.. Hand of God. URL accessed on 2009-12-18.
  71. Benford, S, Greenhalgh, C, Reynard, G, Brown, C and Koleva, B. Understanding and constructing shared spaces with mixed-reality boundaries. ACM Trans. Computer-Human Interaction, 5(3):185–223, Sep. 1998
  72. Office of Tomorrow Media Interaction Lab
  73. Marlow, Chris. Hey, hockey puck! NHL PrePlay adds a second-screen experience to live games, digitalmediawire April 27, 2012
  74. Pair, J.; Wilson, J.; Chastine, J.; Gandy, M. "The Duran Duran Project: The Augmented Reality Toolkit in Live Performance". The First IEEE International Augmented Reality Toolkit Workshop, 2002
  75. Broughall, Nick. Sydney Band Uses Augmented Reality For Video Clip. Gizmodo, 19 October 2009
  76. Pendlebury, Ty. Augmented reality in Aussie film clip. c|net 19 October 2009
  77. Hawkins, Mathew. Augmented Reality Used To Enhance Both Pool And Air Hockey Game Set WatchOctober 15, 2011
  78. One Week Only - Augmented Reality Project Combat-HELO Dev Blog July 31, 2012
  79. What Are the Different Types of Augmented Reality Apps? wiseGeek
  80. The big idea:Augmented Reality. Ngm.nationalgeographic.com (15 May 2012). Retrieved 9 June 2012.
  81. Henderson, Steve; Feiner, Steven. Augmented Reality for Maintenance and Repair (ARMAR). URL accessed on 2010-01-06.
  82. Sandgren, Jeffrey. The Augmented Eye of the Beholder, BrandTech News January 8, 2011
  83. Cameron, Chris. Augmented Reality for Marketers and Developers, ReadWriteWeb
  84. Dillow, Clay BMW Augmented Reality Glasses Help Average Joes Make Repairs, Popular Science September 2009
  85. King, Rachael. Augmented Reality Goes Mobile, Bloomberg Business Week Technology November 3, 2009
  86. Saenz, Aaron Augmented Reality Does Time Travel Tourism SingularityHUB NOvember 19, 2009
  87. Sung, Dan Augmented reality in action - travel and tourism Pocket-lint March 2, 2011
  88. Dawson, Jim Augmented Reality Reveals History to Tourists Life Science August 16, 2009
  89. Bartie, P and Mackaness, W. Development of a speech-based augmented reality system to support exploration of cityscape. Trans. GIS, 10(1):63–86, 2006
  90. Tsotsis, Alexia. Word Lens Translates Words Inside of Images. Yes Really. TechCrunch (16 December 2010)
  91. N.B. Word Lens: This changes everything The Economist: Gulliver blog 18 December 2010
  92. Borghino, Dario Augmented reality glasses perform real-time language translation. gizmag, 29 July 2012
  93. Knowledge-based augmented reality. ACM.
  94. 94.0 94.1 L. B. Rosenberg. The Use of Virtual Fixtures As Perceptual Overlays to Enhance Operator Performance in Remote Environments. Technical Report AL-TR-0089, USAF Armstrong Laboratory, Wright-Patterson AFB OH, 1992.
  95. Wagner, Daniel. First Steps Towards Handheld Augmented Reality. ACM. URL accessed on 2009-09-29.
  96. Piekarski, William; Thomas, Bruce. Tinmith-Metro: New Outdoor Techniques for Creating City Models with an Augmented Reality Wearable Computer Fifth International Symposium on Wearable Computers (ISWC'01), 2001 pp.31
  97. Behringer, R.;[ http://reference.kfupm.edu.sa/content/i/m/improving_the_registration_precision_by__1670204.pdf Improving the Registration Precision by Visual Horizon Silhouette Matching.] Rockwell Science Center
  98. Behringer, R.;Tam, C; McGee, J.; Sundareswaran, V.; Vassiliou, Marius. Two Wearable Testbeds for Augmented Reality: itWARNS and WIMMIS. ISWC 2000, Atlanta, 16–17 October 2000.
  99. R. Behringer, G. Klinker,. D. Mizell. Augmented Reality – Placing Artificial Objects in Real Scenes. Proceedings of IWAR '98. A.K.Peters, Natick, 1999. ISBN 1-56881-098-9
  100. Johnson, Joel. “The Master Key”: L. Frank Baum envisions augmented reality glasses in 1901 Mote & Beam 10 September 2012
  101. http://www.google.com/patents?q=3050870
  102. L. B. Rosenberg, "The Use of Virtual Fixtures to Enhance Operator Performance in Telepresence Environments" SPIE Telemanipulator Technology, 1993.
  103. Wellner, Pierre Computer Augmented Environments: back to the real world. ACM. URL accessed on 28 July 2012.
  104. Barrilleaux, Jon. Experiences and Observations in Applying Augmented Reality to Live Training. Jmbaai.com. Retrieved 9 June 2012.
  105. Wikitude AR Travel Guide. Youtube.com. Retrieved 9 June 2012.
  106. Cameron, Chris. Flash-based AR Gets High-Quality Markerless Upgrade, ReadWriteWeb 9 July 2010
  107. Boyd, Clark. BBC SixthSense blurs digital and the real. BBC News, 14 April 2009
  108. Separa , Jason; Kawano, Gregory. Augmented Reality, California State University, Long Beach

External links Template:In5

Augmented reality at the Open Directory Project

Template:Commons category-inline Template:Mixed reality

This page uses Creative Commons Licensed content from Wikipedia (view authors).

Around Wikia's network

Random Wiki