Absolute risk
this wiki
 This article is about an epidemiological concept. For other uses, see ARR.
In epidemiology, the absolute risk reduction or risk difference is the decrease in risk of a given activity or treatment in relation to a control activity or treatment.^{[1]} It is the inverse of the number needed to treat.^{[2]}
For example, consider a hypothetical drug which reduces the relative risk of colon cancer by 50% over five years. Even without the drug, colon cancer is fairly rare, maybe 1 in 3,000 in every fiveyear period. The rate of colon cancer for a fiveyear treatment with the drug is therefore 1/6,000, as by treating 6,000 people with the drug, one can expect to reduce the number of colon cancer cases from 2 to 1.
In general, absolute risk reduction is usually computed with respect to two treatments A and B, with A typically a drug and B a placebo (in our example above, A is a 5year treatment with the hypothetical drug, and B is treatment with placebo, i.e. no treatment). A defined endpoint has to be specified (in our example: the appearance of colon cancer in the 5 year period). If the probabilities p_{A} and p_{B} of this endpoint under treatments A and B, respectively, are known, then the absolute risk reduction is computed as (p_{B}  p_{A}).
The inverse of the absolute risk reduction, NNT, is an important measure in pharmacoeconomics. If a clinical endpoint is devastating enough (e.g. death, heart attack), drugs with a low absolute risk reduction may still be indicated in particular situations. If the endpoint is minor, health insurers may decline to reimburse drugs with a low absolute risk reduction.
Presenting resultsEdit
The raw calculation of absolute risk reduction is a probability (0.003 fewer cases per person, using the colon cancer example above). Authors such as Ben Goldacre believe that this information is best presented as a natural number in the context of the baseline risk ("reduces 2 cases of colon cancer to 1 case if you treat 6,000 people for five years").^{[3]} Natural numbers, which are used in the number needed to treat approach, are easily understood by nonexperts.
Worked exampleEdit
Example 1: risk reduction  Example 2: risk increase  

Experimental group (E)  Control group (C)  Total  (E)  (C)  Total  
Events (E)  EE = 15  CE = 100  115  EE = 75  CE = 100  175 
Nonevents (N)  EN = 135  CN = 150  285  EN = 75  CN = 150  225 
Total subjects (S)  ES = EE + EN = 150  CS = CE + CN = 250  400  ES = 150  CS = 250  400 
Event rate (ER)  EER = EE / ES = 0.1, or 10%  CER = CE / CS = 0.4, or 40%  EER = 0.5 (50%)  CER = 0.4 (40%) 
Equation  Variable  Abbr.  Example 1  Example 2 

CER − EER  < 0: absolute risk reduction  ARR  (−)0.3, or (−)30%  N/A 
> 0: absolute risk increase  ARI  N/A  0.1, or 10%  
(CER − EER) / CER  < 0: relative risk reduction  RRR  (−)0.75, or (−)75%  N/A 
> 0: relative risk increase  RRI  N/A  0.25, or 25%  
1 / (CER − EER)  < 0: number needed to treat  NNT  (−)3.33  N/A 
> 0: number needed to harm  NNH  N/A  10  
EER / CER  relative risk  RR  0.25  1.25 
(EE / EN) / (CE / CN)  odds ratio  OR  0.167  1.5 
EER − CER  attributable risk  AR  (−)0.30, or (−)30%  0.1, or 10% 
(RR − 1) / RR  attributable risk percent  ARP  N/A  20% 
1 − RR (or 1 − OR)  preventive fraction  PF  0.75, or 75%  N/A 
ReferencesEdit
 ↑ An overview of measurements in epidemiology. URL accessed on 20100201.
 ↑ Laupacis A, Sackett DL, Roberts RS. An assessment of clinically useful measures of the consequences of treatment. N Engl J Med 1988;318:172833. PMID 3374545.
 ↑ Ben Goldacre (2008). Bad Science, 239–260, New York: Fourth Estate.
See alsoEdit
External linksEdit
 Measures of effect size of an intervention  unmc.edu.
Biomedical research: Clinical study design / Design of experiments  

Overview  
Controlled study (EBM I to II1; A to B)  
Observational study (EBM II2 to II3; B to C)  
Epidemiology/ methods 

Trial/test types  
Analysis of clinical trials  
Interpretation of results  
* Category 